SentenceTransformer based on Geotrend/bert-base-sw-cased
This is a sentence-transformers model finetuned from Geotrend/bert-base-sw-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Geotrend/bert-base-sw-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Mollel/swahili-bert-base-sw-cased-nli-matryoshka")
# Run inference
sentences = [
'Mwanamume aliyevalia koti la bluu la kuzuia upepo, amelala uso chini kwenye benchi ya bustani, akiwa na chupa ya pombe iliyofungwa kwenye mojawapo ya miguu ya benchi.',
'Mwanamume amelala uso chini kwenye benchi ya bustani.',
'Mwanamume fulani anacheza dansi kwenye klabu hiyo akifungua chupa.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-test-768
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6869 |
spearman_cosine | 0.6802 |
pearson_manhattan | 0.6719 |
spearman_manhattan | 0.6653 |
pearson_euclidean | 0.6734 |
spearman_euclidean | 0.6666 |
pearson_dot | 0.554 |
spearman_dot | 0.5399 |
pearson_max | 0.6869 |
spearman_max | 0.6802 |
Semantic Similarity
- Dataset:
sts-test-512
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6828 |
spearman_cosine | 0.677 |
pearson_manhattan | 0.6729 |
spearman_manhattan | 0.6664 |
pearson_euclidean | 0.6738 |
spearman_euclidean | 0.6667 |
pearson_dot | 0.5296 |
spearman_dot | 0.5174 |
pearson_max | 0.6828 |
spearman_max | 0.677 |
Semantic Similarity
- Dataset:
sts-test-256
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6758 |
spearman_cosine | 0.6702 |
pearson_manhattan | 0.6718 |
spearman_manhattan | 0.6643 |
pearson_euclidean | 0.673 |
spearman_euclidean | 0.665 |
pearson_dot | 0.4892 |
spearman_dot | 0.4783 |
pearson_max | 0.6758 |
spearman_max | 0.6702 |
Semantic Similarity
- Dataset:
sts-test-128
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.67 |
spearman_cosine | 0.6638 |
pearson_manhattan | 0.6693 |
spearman_manhattan | 0.6594 |
pearson_euclidean | 0.671 |
spearman_euclidean | 0.6601 |
pearson_dot | 0.4509 |
spearman_dot | 0.4402 |
pearson_max | 0.671 |
spearman_max | 0.6638 |
Semantic Similarity
- Dataset:
sts-test-64
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6615 |
spearman_cosine | 0.6556 |
pearson_manhattan | 0.6653 |
spearman_manhattan | 0.6533 |
pearson_euclidean | 0.6672 |
spearman_euclidean | 0.654 |
pearson_dot | 0.3868 |
spearman_dot | 0.3771 |
pearson_max | 0.6672 |
spearman_max | 0.6556 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
---|---|---|---|---|---|---|---|
0.0057 | 100 | 20.0932 | - | - | - | - | - |
0.0115 | 200 | 16.2641 | - | - | - | - | - |
0.0172 | 300 | 12.797 | - | - | - | - | - |
0.0229 | 400 | 12.1927 | - | - | - | - | - |
0.0287 | 500 | 11.0423 | - | - | - | - | - |
0.0344 | 600 | 9.676 | - | - | - | - | - |
0.0402 | 700 | 8.1545 | - | - | - | - | - |
0.0459 | 800 | 7.7822 | - | - | - | - | - |
0.0516 | 900 | 7.9352 | - | - | - | - | - |
0.0574 | 1000 | 7.9534 | - | - | - | - | - |
0.0631 | 1100 | 8.1006 | - | - | - | - | - |
0.0688 | 1200 | 7.4767 | - | - | - | - | - |
0.0746 | 1300 | 8.3747 | - | - | - | - | - |
0.0803 | 1400 | 7.7686 | - | - | - | - | - |
0.0860 | 1500 | 6.8076 | - | - | - | - | - |
0.0918 | 1600 | 6.9238 | - | - | - | - | - |
0.0975 | 1700 | 6.5503 | - | - | - | - | - |
0.1033 | 1800 | 6.74 | - | - | - | - | - |
0.1090 | 1900 | 7.7802 | - | - | - | - | - |
0.1147 | 2000 | 7.2594 | - | - | - | - | - |
0.1205 | 2100 | 7.091 | - | - | - | - | - |
0.1262 | 2200 | 6.8677 | - | - | - | - | - |
0.1319 | 2300 | 6.4249 | - | - | - | - | - |
0.1377 | 2400 | 6.1512 | - | - | - | - | - |
0.1434 | 2500 | 5.9714 | - | - | - | - | - |
0.1491 | 2600 | 5.4914 | - | - | - | - | - |
0.1549 | 2700 | 5.5825 | - | - | - | - | - |
0.1606 | 2800 | 5.9456 | - | - | - | - | - |
0.1664 | 2900 | 6.4012 | - | - | - | - | - |
0.1721 | 3000 | 7.1999 | - | - | - | - | - |
0.1778 | 3100 | 6.8254 | - | - | - | - | - |
0.1836 | 3200 | 6.541 | - | - | - | - | - |
0.1893 | 3300 | 6.5411 | - | - | - | - | - |
0.1950 | 3400 | 5.56 | - | - | - | - | - |
0.2008 | 3500 | 6.4692 | - | - | - | - | - |
0.2065 | 3600 | 5.9266 | - | - | - | - | - |
0.2122 | 3700 | 6.2055 | - | - | - | - | - |
0.2180 | 3800 | 6.0835 | - | - | - | - | - |
0.2237 | 3900 | 6.6112 | - | - | - | - | - |
0.2294 | 4000 | 6.3391 | - | - | - | - | - |
0.2352 | 4100 | 5.8379 | - | - | - | - | - |
0.2409 | 4200 | 5.8107 | - | - | - | - | - |
0.2467 | 4300 | 6.1473 | - | - | - | - | - |
0.2524 | 4400 | 6.2827 | - | - | - | - | - |
0.2581 | 4500 | 6.2299 | - | - | - | - | - |
0.2639 | 4600 | 6.1013 | - | - | - | - | - |
0.2696 | 4700 | 5.6491 | - | - | - | - | - |
0.2753 | 4800 | 5.8641 | - | - | - | - | - |
0.2811 | 4900 | 5.4278 | - | - | - | - | - |
0.2868 | 5000 | 5.7304 | - | - | - | - | - |
0.2925 | 5100 | 5.4652 | - | - | - | - | - |
0.2983 | 5200 | 5.9031 | - | - | - | - | - |
0.3040 | 5300 | 6.1014 | - | - | - | - | - |
0.3098 | 5400 | 5.9282 | - | - | - | - | - |
0.3155 | 5500 | 5.6618 | - | - | - | - | - |
0.3212 | 5600 | 5.3803 | - | - | - | - | - |
0.3270 | 5700 | 5.5759 | - | - | - | - | - |
0.3327 | 5800 | 5.6936 | - | - | - | - | - |
0.3384 | 5900 | 5.7249 | - | - | - | - | - |
0.3442 | 6000 | 5.5926 | - | - | - | - | - |
0.3499 | 6100 | 5.6329 | - | - | - | - | - |
0.3556 | 6200 | 5.7456 | - | - | - | - | - |
0.3614 | 6300 | 5.1638 | - | - | - | - | - |
0.3671 | 6400 | 5.3258 | - | - | - | - | - |
0.3729 | 6500 | 5.1216 | - | - | - | - | - |
0.3786 | 6600 | 5.7453 | - | - | - | - | - |
0.3843 | 6700 | 4.9906 | - | - | - | - | - |
0.3901 | 6800 | 5.1126 | - | - | - | - | - |
0.3958 | 6900 | 5.2389 | - | - | - | - | - |
0.4015 | 7000 | 5.1483 | - | - | - | - | - |
0.4073 | 7100 | 5.6072 | - | - | - | - | - |
0.4130 | 7200 | 5.2018 | - | - | - | - | - |
0.4187 | 7300 | 5.4083 | - | - | - | - | - |
0.4245 | 7400 | 5.1995 | - | - | - | - | - |
0.4302 | 7500 | 5.5787 | - | - | - | - | - |
0.4360 | 7600 | 4.9942 | - | - | - | - | - |
0.4417 | 7700 | 4.9196 | - | - | - | - | - |
0.4474 | 7800 | 5.3938 | - | - | - | - | - |
0.4532 | 7900 | 5.381 | - | - | - | - | - |
0.4589 | 8000 | 4.908 | - | - | - | - | - |
0.4646 | 8100 | 4.8871 | - | - | - | - | - |
0.4704 | 8200 | 5.2298 | - | - | - | - | - |
0.4761 | 8300 | 4.6157 | - | - | - | - | - |
0.4818 | 8400 | 5.0344 | - | - | - | - | - |
0.4876 | 8500 | 5.0713 | - | - | - | - | - |
0.4933 | 8600 | 5.1952 | - | - | - | - | - |
0.4991 | 8700 | 5.5352 | - | - | - | - | - |
0.5048 | 8800 | 5.1556 | - | - | - | - | - |
0.5105 | 8900 | 5.2318 | - | - | - | - | - |
0.5163 | 9000 | 4.7887 | - | - | - | - | - |
0.5220 | 9100 | 4.868 | - | - | - | - | - |
0.5277 | 9200 | 4.9544 | - | - | - | - | - |
0.5335 | 9300 | 4.816 | - | - | - | - | - |
0.5392 | 9400 | 4.8374 | - | - | - | - | - |
0.5449 | 9500 | 5.3242 | - | - | - | - | - |
0.5507 | 9600 | 4.9039 | - | - | - | - | - |
0.5564 | 9700 | 5.2907 | - | - | - | - | - |
0.5622 | 9800 | 5.4007 | - | - | - | - | - |
0.5679 | 9900 | 5.3016 | - | - | - | - | - |
0.5736 | 10000 | 5.3235 | - | - | - | - | - |
0.5794 | 10100 | 5.1566 | - | - | - | - | - |
0.5851 | 10200 | 5.1348 | - | - | - | - | - |
0.5908 | 10300 | 5.4583 | - | - | - | - | - |
0.5966 | 10400 | 4.9528 | - | - | - | - | - |
0.6023 | 10500 | 5.0073 | - | - | - | - | - |
0.6080 | 10600 | 5.0324 | - | - | - | - | - |
0.6138 | 10700 | 5.4107 | - | - | - | - | - |
0.6195 | 10800 | 5.3643 | - | - | - | - | - |
0.6253 | 10900 | 5.1267 | - | - | - | - | - |
0.6310 | 11000 | 5.0443 | - | - | - | - | - |
0.6367 | 11100 | 5.2001 | - | - | - | - | - |
0.6425 | 11200 | 4.8813 | - | - | - | - | - |
0.6482 | 11300 | 5.4734 | - | - | - | - | - |
0.6539 | 11400 | 5.0344 | - | - | - | - | - |
0.6597 | 11500 | 5.5043 | - | - | - | - | - |
0.6654 | 11600 | 4.6201 | - | - | - | - | - |
0.6711 | 11700 | 5.4626 | - | - | - | - | - |
0.6769 | 11800 | 5.3813 | - | - | - | - | - |
0.6826 | 11900 | 4.626 | - | - | - | - | - |
0.6883 | 12000 | 4.87 | - | - | - | - | - |
0.6941 | 12100 | 5.0015 | - | - | - | - | - |
0.6998 | 12200 | 4.962 | - | - | - | - | - |
0.7056 | 12300 | 5.1613 | - | - | - | - | - |
0.7113 | 12400 | 5.2074 | - | - | - | - | - |
0.7170 | 12500 | 4.958 | - | - | - | - | - |
0.7228 | 12600 | 4.4516 | - | - | - | - | - |
0.7285 | 12700 | 4.8421 | - | - | - | - | - |
0.7342 | 12800 | 4.9242 | - | - | - | - | - |
0.7400 | 12900 | 4.9256 | - | - | - | - | - |
0.7457 | 13000 | 4.8254 | - | - | - | - | - |
0.7514 | 13100 | 4.5114 | - | - | - | - | - |
0.7572 | 13200 | 7.7118 | - | - | - | - | - |
0.7629 | 13300 | 7.0822 | - | - | - | - | - |
0.7687 | 13400 | 6.8022 | - | - | - | - | - |
0.7744 | 13500 | 6.7295 | - | - | - | - | - |
0.7801 | 13600 | 6.0547 | - | - | - | - | - |
0.7859 | 13700 | 6.5285 | - | - | - | - | - |
0.7916 | 13800 | 6.2666 | - | - | - | - | - |
0.7973 | 13900 | 6.1031 | - | - | - | - | - |
0.8031 | 14000 | 5.9138 | - | - | - | - | - |
0.8088 | 14100 | 5.6636 | - | - | - | - | - |
0.8145 | 14200 | 5.7073 | - | - | - | - | - |
0.8203 | 14300 | 5.7963 | - | - | - | - | - |
0.8260 | 14400 | 5.7336 | - | - | - | - | - |
0.8318 | 14500 | 5.8113 | - | - | - | - | - |
0.8375 | 14600 | 5.6708 | - | - | - | - | - |
0.8432 | 14700 | 5.4565 | - | - | - | - | - |
0.8490 | 14800 | 5.4293 | - | - | - | - | - |
0.8547 | 14900 | 5.4166 | - | - | - | - | - |
0.8604 | 15000 | 5.3616 | - | - | - | - | - |
0.8662 | 15100 | 5.1579 | - | - | - | - | - |
0.8719 | 15200 | 5.3887 | - | - | - | - | - |
0.8776 | 15300 | 5.346 | - | - | - | - | - |
0.8834 | 15400 | 5.2762 | - | - | - | - | - |
0.8891 | 15500 | 5.3417 | - | - | - | - | - |
0.8949 | 15600 | 5.1607 | - | - | - | - | - |
0.9006 | 15700 | 5.4493 | - | - | - | - | - |
0.9063 | 15800 | 5.0268 | - | - | - | - | - |
0.9121 | 15900 | 5.0612 | - | - | - | - | - |
0.9178 | 16000 | 5.1471 | - | - | - | - | - |
0.9235 | 16100 | 4.8275 | - | - | - | - | - |
0.9293 | 16200 | 5.1464 | - | - | - | - | - |
0.9350 | 16300 | 4.958 | - | - | - | - | - |
0.9407 | 16400 | 5.1968 | - | - | - | - | - |
0.9465 | 16500 | 4.7783 | - | - | - | - | - |
0.9522 | 16600 | 5.0834 | - | - | - | - | - |
0.9580 | 16700 | 4.9839 | - | - | - | - | - |
0.9637 | 16800 | 5.0078 | - | - | - | - | - |
0.9694 | 16900 | 5.1624 | - | - | - | - | - |
0.9752 | 17000 | 5.2132 | - | - | - | - | - |
0.9809 | 17100 | 4.9741 | - | - | - | - | - |
0.9866 | 17200 | 4.96 | - | - | - | - | - |
0.9924 | 17300 | 5.1834 | - | - | - | - | - |
0.9981 | 17400 | 4.8955 | - | - | - | - | - |
1.0 | 17433 | - | 0.6638 | 0.6702 | 0.6770 | 0.6556 | 0.6802 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.40.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Mollel/swahili-bert-base-sw-cased-nli-matryoshka
Base model
Geotrend/bert-base-sw-casedEvaluation results
- Pearson Cosine on sts test 768self-reported0.687
- Spearman Cosine on sts test 768self-reported0.680
- Pearson Manhattan on sts test 768self-reported0.672
- Spearman Manhattan on sts test 768self-reported0.665
- Pearson Euclidean on sts test 768self-reported0.673
- Spearman Euclidean on sts test 768self-reported0.667
- Pearson Dot on sts test 768self-reported0.554
- Spearman Dot on sts test 768self-reported0.540
- Pearson Max on sts test 768self-reported0.687
- Spearman Max on sts test 768self-reported0.680