|
--- |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: microsoft/phi-2 |
|
model-index: |
|
- name: phi-2-universal-NER |
|
results: [] |
|
datasets: |
|
- Universal-NER/Pile-NER-type |
|
language: |
|
- en |
|
--- |
|
|
|
# phi-2-universal-NER |
|
|
|
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the Universal-NER/Pile-NER-type dataset. |
|
|
|
## Model description |
|
|
|
This model shows power of small language model. We can finetune phi-2 on google colab free version. It's very simple and easy. I couldn't fine tuned whole model on free colab so used PEFT. |
|
|
|
## Intended uses & limitations |
|
|
|
This model is fine tuned from Phi-2 and UniversalNER dataset. |
|
|
|
Phi-2 model license changed to MIT but UniversalNER is still under research license so this model can be used for research purpose only. |
|
|
|
## Training and evaluation data |
|
|
|
I have used just 5 epochs in fine tuning. |
|
|
|
## Training procedure notebook |
|
|
|
https://github.com/mit1280/fined-tuning/blob/main/phi_2_fine_tune_using_PEFT%2Binference.ipynb |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- training_steps: 1000 |
|
|
|
### Inference Code |
|
|
|
```python |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
from transformers import StoppingCriteria |
|
|
|
config = PeftConfig.from_pretrained("Mit1208/phi-2-universal-NER") |
|
base_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2",device_map="auto", trust_remote_code=True) |
|
model = PeftModel.from_pretrained(base_model, "Mit1208/phi-2-universal-NER", trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained("Mit1208/phi-2-universal-NER", trust_remote_code=True) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
conversations = [ { "from": "human", "value": "Text: Mit Patel here from India"}, {"from": "gpt", "value": "I've read this text."}, |
|
{"from":"human", "value":"what is a name of the person in the text?"}] |
|
inference_text = tokenizer.apply_chat_template(conversations, tokenize=False) + '<|im_start|>gpt:\n' |
|
inputs = tokenizer(inference_text, return_tensors="pt", return_attention_mask=False).to(device) |
|
|
|
class EosListStoppingCriteria(StoppingCriteria): |
|
def __init__(self, eos_sequence = tokenizer.encode("<|im_end|>")): |
|
self.eos_sequence = eos_sequence |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
last_ids = input_ids[:,-len(self.eos_sequence):].tolist() |
|
return self.eos_sequence in last_ids |
|
|
|
outputs = model.generate(**inputs, max_length=512, pad_token_id= tokenizer.eos_token_id, |
|
stopping_criteria = [EosListStoppingCriteria()]) |
|
|
|
text = tokenizer.batch_decode(outputs)[0] |
|
|
|
print(text) |
|
|
|
# Output |
|
''' |
|
<|im_start|>human |
|
Text: Mit Patel here from India<|im_end|> |
|
<|im_start|>gpt |
|
I've read this text.<|im_end|> |
|
<|im_start|>human |
|
what is a name of the person in the text?<|im_end|> |
|
<|im_start|>gpt: |
|
["Mit Patel"]<|im_end|> |
|
''' |
|
``` |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.1 |
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |