librarian-bot's picture
Librarian Bot: Add base_model information to model
3508f2e
|
raw
history blame
2.76 kB
metadata
language:
  - en
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
  - layoutlmv3
  - token_classifier
  - layout_analysis
datasets:
  - doc_lay_net-small
metrics:
  - precision
  - recall
  - f1
  - accuracy
pipeline_tag: token-classification
base_model: microsoft/layoutlmv3-base
model-index:
  - name: layoutlmv3-finetuned-DocLayNet
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: doc_lay_net-small
          type: doc_lay_net-small
          config: DocLayNet_2022.08_processed_on_2023.01
          split: test
          args: DocLayNet_2022.08_processed_on_2023.01
        metrics:
          - type: precision
            value: 0.6178861788617886
            name: Precision
          - type: recall
            value: 0.7238095238095238
            name: Recall
          - type: f1
            value: 0.6666666666666667
            name: F1
          - type: accuracy
            value: 0.8719611021069692
            name: Accuracy

layoutlmv3-finetuned-DocLayNet

This model is a fine-tuned version of microsoft/layoutlmv3-base on the doc_lay_net-small dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5644
  • Precision: 0.6179
  • Recall: 0.7238
  • F1: 0.6667
  • Accuracy: 0.8720

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.3383 0.58 200 0.8358 0.3007 0.4381 0.3566 0.7724
0.8308 1.16 400 0.6735 0.4634 0.5429 0.5 0.8084
0.518 1.74 600 0.5706 0.5373 0.6857 0.6025 0.8399
0.3856 2.33 800 0.6303 0.6032 0.7238 0.6580 0.8648
0.2558 2.91 1000 0.5644 0.6179 0.7238 0.6667 0.8720

Framework versions

  • Transformers 4.27.3
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2

How to Train & Inference:

Check this out this repo: https://github.com/mit1280/Document-AI