Edit model card

This is the LLaMAfied version of Qwen1.5-7B-Chat model by Alibaba Cloud. The original codebase can be found at: (https://github.com/hiyouga/LLaMA-Factory/blob/main/tests/llamafy_qwen.py). I have made modifications to make it compatible with qwen1.5. This model is converted with https://github.com/Minami-su/character_AI_open/blob/main/llamafy_qwen_v2.py

Usage:


from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("Minami-su/Qwen1.5-7B-Chat_llamafy")
model = AutoModelForCausalLM.from_pretrained("Minami-su/Qwen1.5-7B-Chat_llamafy", torch_dtype="auto", device_map="auto")
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

messages = [
    {"role": "user", "content": "Who are you?"}
]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
inputs = inputs.to("cuda")
generate_ids = model.generate(inputs,max_length=2048, streamer=streamer)

Test

load in 4bit

hf-causal (pretrained=Qwen1.5-7B-Chat), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8
|    Task     |Version| Metric |Value |   |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge|      0|acc     |0.4155|±  |0.0144|
|             |       |acc_norm|0.4480|±  |0.0145|
|truthfulqa_mc|      1|mc1     |0.3513|±  |0.0167|
|             |       |mc2     |0.5165|±  |0.0159|
|winogrande   |      0|acc     |0.6330|±  |0.0135|

load in 4bit

hf-causal (pretrained=Qwen1.5-7B-Chat_llamafy), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8
|    Task     |Version| Metric |Value |   |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge|      0|acc     |0.4172|±  |0.0144|
|             |       |acc_norm|0.4488|±  |0.0145|
|truthfulqa_mc|      1|mc1     |0.3501|±  |0.0167|
|             |       |mc2     |0.5164|±  |0.0159|
|winogrande   |      0|acc     |0.6306|±  |0.0136|

Downloads last month
95
Inference Examples
Inference API (serverless) has been turned off for this model.