Post
42
Traditional data leak prevention is failing. A new paper has a solution-oriented approach inspired by evolution.
The paper introduces a genetic-algorithm-driven method for detecting data leaks. To prove its effectiveness, the researchers Anatoliy Sachenko, Petro V., Oleg Savenko, Viktor Ostroverkhov, Bogdan Maslyyak from Casimir Pulaski Radom University and others needed a real-world, complex PII dataset. We're proud that the AI4Privacy PII 300k dataset was used as a key benchmark for their experiments.
This is the power of open-source collaboration. We provide complex, real-world data challenges, and brilliant researchers develop and share better solutions to solve them. It's a win for every organization when this research helps pave the way for more adaptive and intelligent Data Loss Prevention systems.
🔗 Read the full paper to see the data and learn how genetic algorithms are making a difference in cybersecurity: https://ceur-ws.org/Vol-4005/paper19.pdf
#OpenSource
#DataPrivacy
#LLM
#Anonymization
#AIsecurity
#HuggingFace
#Ai4Privacy
#Worldslargestopensourceprivacymaskingdataset
The paper introduces a genetic-algorithm-driven method for detecting data leaks. To prove its effectiveness, the researchers Anatoliy Sachenko, Petro V., Oleg Savenko, Viktor Ostroverkhov, Bogdan Maslyyak from Casimir Pulaski Radom University and others needed a real-world, complex PII dataset. We're proud that the AI4Privacy PII 300k dataset was used as a key benchmark for their experiments.
This is the power of open-source collaboration. We provide complex, real-world data challenges, and brilliant researchers develop and share better solutions to solve them. It's a win for every organization when this research helps pave the way for more adaptive and intelligent Data Loss Prevention systems.
🔗 Read the full paper to see the data and learn how genetic algorithms are making a difference in cybersecurity: https://ceur-ws.org/Vol-4005/paper19.pdf
#OpenSource
#DataPrivacy
#LLM
#Anonymization
#AIsecurity
#HuggingFace
#Ai4Privacy
#Worldslargestopensourceprivacymaskingdataset