metadata
license: cc-by-nc-4.0
tags:
- generated_from_trainer
base_model: facebook/mms-1b-all
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-livvi-karelian-CodeSwitching
results: []
wav2vec2-large-mms-1b-livvi-karelian-CodeSwitching
This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3635
- Wer: 0.4844
- Cer: 0.1090
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
9.8411 | 0.9070 | 100 | 3.1112 | 0.9990 | 0.9430 |
1.7444 | 1.8141 | 200 | 0.8819 | 0.8271 | 0.2320 |
0.9096 | 2.7211 | 300 | 0.7172 | 0.7652 | 0.1963 |
0.781 | 3.6281 | 400 | 0.6279 | 0.7141 | 0.1759 |
0.711 | 4.5351 | 500 | 0.5565 | 0.6641 | 0.1597 |
0.6544 | 5.4422 | 600 | 0.5162 | 0.6346 | 0.1522 |
0.6186 | 6.3492 | 700 | 0.5023 | 0.6211 | 0.1489 |
0.6239 | 7.2562 | 800 | 0.4880 | 0.6042 | 0.1428 |
0.5876 | 8.1633 | 900 | 0.4737 | 0.6028 | 0.1429 |
0.5862 | 9.0703 | 1000 | 0.4668 | 0.5940 | 0.1400 |
0.5821 | 9.9773 | 1100 | 0.4593 | 0.5880 | 0.1385 |
0.5405 | 10.8844 | 1200 | 0.4491 | 0.5819 | 0.1368 |
0.5591 | 11.7914 | 1300 | 0.4459 | 0.5819 | 0.1365 |
0.5374 | 12.6984 | 1400 | 0.4409 | 0.5798 | 0.1358 |
0.535 | 13.6054 | 1500 | 0.4347 | 0.5765 | 0.1336 |
0.5332 | 14.5125 | 1600 | 0.4358 | 0.5717 | 0.1336 |
0.5142 | 15.4195 | 1700 | 0.4263 | 0.5643 | 0.1312 |
0.5156 | 16.3265 | 1800 | 0.4221 | 0.5626 | 0.1299 |
0.5212 | 17.2336 | 1900 | 0.4188 | 0.5599 | 0.1297 |
0.4892 | 18.1406 | 2000 | 0.4181 | 0.5585 | 0.1299 |
0.4954 | 19.0476 | 2100 | 0.4128 | 0.5524 | 0.1288 |
0.4867 | 19.9546 | 2200 | 0.4083 | 0.5531 | 0.1275 |
0.482 | 20.8617 | 2300 | 0.4064 | 0.5403 | 0.1254 |
0.4892 | 21.7687 | 2400 | 0.4070 | 0.5396 | 0.1256 |
0.4712 | 22.6757 | 2500 | 0.4009 | 0.5335 | 0.1245 |
0.4649 | 23.5828 | 2600 | 0.3978 | 0.5392 | 0.1253 |
0.4711 | 24.4898 | 2700 | 0.3958 | 0.5355 | 0.1242 |
0.4578 | 25.3968 | 2800 | 0.3937 | 0.5382 | 0.1236 |
0.4594 | 26.3039 | 2900 | 0.3952 | 0.5318 | 0.1224 |
0.453 | 27.2109 | 3000 | 0.3950 | 0.5457 | 0.1245 |
0.4453 | 28.1179 | 3100 | 0.3939 | 0.5260 | 0.1210 |
0.4428 | 29.0249 | 3200 | 0.3886 | 0.5233 | 0.1207 |
0.4335 | 29.9320 | 3300 | 0.3867 | 0.5271 | 0.1207 |
0.4426 | 30.8390 | 3400 | 0.3843 | 0.5237 | 0.1202 |
0.4342 | 31.7460 | 3500 | 0.3875 | 0.5203 | 0.1193 |
0.429 | 32.6531 | 3600 | 0.3803 | 0.5179 | 0.1187 |
0.4141 | 33.5601 | 3700 | 0.3794 | 0.5135 | 0.1173 |
0.428 | 34.4671 | 3800 | 0.3794 | 0.5179 | 0.1179 |
0.4043 | 35.3741 | 3900 | 0.3808 | 0.5135 | 0.1178 |
0.4203 | 36.2812 | 4000 | 0.3801 | 0.5152 | 0.1189 |
0.4078 | 37.1882 | 4100 | 0.3783 | 0.5152 | 0.1181 |
0.4073 | 38.0952 | 4200 | 0.3752 | 0.5145 | 0.1175 |
0.4152 | 39.0023 | 4300 | 0.3750 | 0.5166 | 0.1178 |
0.4027 | 39.9093 | 4400 | 0.3768 | 0.5162 | 0.1177 |
0.4013 | 40.8163 | 4500 | 0.3758 | 0.5159 | 0.1177 |
0.3903 | 41.7234 | 4600 | 0.3734 | 0.5098 | 0.1168 |
0.3905 | 42.6304 | 4700 | 0.3703 | 0.5037 | 0.1147 |
0.3942 | 43.5374 | 4800 | 0.3735 | 0.5058 | 0.1156 |
0.3835 | 44.4444 | 4900 | 0.3748 | 0.5061 | 0.1146 |
0.3752 | 45.3515 | 5000 | 0.3710 | 0.5085 | 0.1146 |
0.3899 | 46.2585 | 5100 | 0.3702 | 0.4980 | 0.1134 |
0.3774 | 47.1655 | 5200 | 0.3692 | 0.5081 | 0.1140 |
0.3749 | 48.0726 | 5300 | 0.3698 | 0.5030 | 0.1142 |
0.3769 | 48.9796 | 5400 | 0.3670 | 0.4983 | 0.1136 |
0.3654 | 49.8866 | 5500 | 0.3670 | 0.5041 | 0.1135 |
0.3637 | 50.7937 | 5600 | 0.3675 | 0.5030 | 0.1137 |
0.3728 | 51.7007 | 5700 | 0.3662 | 0.5003 | 0.1121 |
0.367 | 52.6077 | 5800 | 0.3650 | 0.4912 | 0.1119 |
0.3614 | 53.5147 | 5900 | 0.3664 | 0.4986 | 0.1126 |
0.358 | 54.4218 | 6000 | 0.3674 | 0.4963 | 0.1130 |
0.37 | 55.3288 | 6100 | 0.3646 | 0.4986 | 0.1131 |
0.3612 | 56.2358 | 6200 | 0.3673 | 0.4939 | 0.1120 |
0.3568 | 57.1429 | 6300 | 0.3635 | 0.4942 | 0.1113 |
0.3564 | 58.0499 | 6400 | 0.3667 | 0.4973 | 0.1120 |
0.3544 | 58.9569 | 6500 | 0.3642 | 0.4939 | 0.1110 |
0.355 | 59.8639 | 6600 | 0.3634 | 0.4939 | 0.1111 |
0.3546 | 60.7710 | 6700 | 0.3633 | 0.4915 | 0.1112 |
0.3479 | 61.6780 | 6800 | 0.3624 | 0.4926 | 0.1115 |
0.3433 | 62.5850 | 6900 | 0.3627 | 0.4932 | 0.1112 |
0.351 | 63.4921 | 7000 | 0.3657 | 0.4895 | 0.1107 |
0.3393 | 64.3991 | 7100 | 0.3663 | 0.4875 | 0.1103 |
0.3477 | 65.3061 | 7200 | 0.3633 | 0.4942 | 0.1114 |
0.3433 | 66.2132 | 7300 | 0.3637 | 0.4929 | 0.1103 |
0.3431 | 67.1202 | 7400 | 0.3629 | 0.4885 | 0.1102 |
0.3495 | 68.0272 | 7500 | 0.3624 | 0.4932 | 0.1101 |
0.3292 | 68.9342 | 7600 | 0.3615 | 0.4885 | 0.1095 |
0.342 | 69.8413 | 7700 | 0.3641 | 0.4875 | 0.1093 |
0.3406 | 70.7483 | 7800 | 0.3643 | 0.4878 | 0.1098 |
0.3308 | 71.6553 | 7900 | 0.3644 | 0.4899 | 0.1103 |
0.3362 | 72.5624 | 8000 | 0.3653 | 0.4844 | 0.1093 |
0.3265 | 73.4694 | 8100 | 0.3635 | 0.4902 | 0.1099 |
0.3327 | 74.3764 | 8200 | 0.3641 | 0.4844 | 0.1089 |
0.3259 | 75.2834 | 8300 | 0.3645 | 0.4871 | 0.1091 |
0.3327 | 76.1905 | 8400 | 0.3641 | 0.4848 | 0.1093 |
0.3261 | 77.0975 | 8500 | 0.3639 | 0.4875 | 0.1100 |
0.3332 | 78.0045 | 8600 | 0.3632 | 0.4885 | 0.1099 |
0.327 | 78.9116 | 8700 | 0.3635 | 0.4858 | 0.1096 |
0.3291 | 79.8186 | 8800 | 0.3635 | 0.4861 | 0.1090 |
0.3255 | 80.7256 | 8900 | 0.3636 | 0.4909 | 0.1101 |
0.3303 | 81.6327 | 9000 | 0.3633 | 0.4855 | 0.1098 |
0.3293 | 82.5397 | 9100 | 0.3625 | 0.4848 | 0.1093 |
0.3263 | 83.4467 | 9200 | 0.3632 | 0.4848 | 0.1093 |
0.3242 | 84.3537 | 9300 | 0.3641 | 0.4838 | 0.1094 |
0.327 | 85.2608 | 9400 | 0.3646 | 0.4861 | 0.1097 |
0.3297 | 86.1678 | 9500 | 0.3634 | 0.4851 | 0.1097 |
0.3259 | 87.0748 | 9600 | 0.3634 | 0.4841 | 0.1091 |
0.3242 | 87.9819 | 9700 | 0.3635 | 0.4855 | 0.1095 |
0.3156 | 88.8889 | 9800 | 0.3638 | 0.4851 | 0.1092 |
0.3231 | 89.7959 | 9900 | 0.3637 | 0.4858 | 0.1093 |
0.3193 | 90.7029 | 10000 | 0.3635 | 0.4844 | 0.1090 |
Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.2
- Datasets 2.19.0
- Tokenizers 0.19.1