Original result
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.008
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.017
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.017
After training result
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.007
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.002
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.003
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.024
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.066
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.070
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.071
Config
- dataset: NIH
- original model: facebook/detr-resnet-50
- lr: 0.0001
- max_epochs: 3
Logging
Training process
{'training_loss': tensor(2.0822, device='cuda:0'), 'train_loss_ce': tensor(0.5032, device='cuda:0'), 'train_loss_bbox': tensor(0.1356, device='cuda:0'), 'train_loss_giou': tensor(0.4505, device='cuda:0'), 'train_cardinality_error': tensor(1.0625, device='cuda:0'), 'validation_loss': tensor(2.3906, device='cuda:0'), 'validation_loss_ce': tensor(0.5131, device='cuda:0'), 'validation_loss_bbox': tensor(0.1641, device='cuda:0'), 'validation_loss_giou': tensor(0.5285, device='cuda:0'), 'validation_cardinality_error': tensor(1.1227, device='cuda:0')}
{'training_loss': tensor(2.5546, device='cuda:0'), 'train_loss_ce': tensor(0.5681, device='cuda:0'), 'train_loss_bbox': tensor(0.1646, device='cuda:0'), 'train_loss_giou': tensor(0.5818, device='cuda:0'), 'train_cardinality_error': tensor(1.2500, device='cuda:0'), 'validation_loss': tensor(2.4028, device='cuda:0'), 'validation_loss_ce': tensor(0.5090, device='cuda:0'), 'validation_loss_bbox': tensor(0.1696, device='cuda:0'), 'validation_loss_giou': tensor(0.5230, device='cuda:0'), 'validation_cardinality_error': tensor(1.1227, device='cuda:0')}
{'training_loss': tensor(2.4528, device='cuda:0'), 'train_loss_ce': tensor(0.4475, device='cuda:0'), 'train_loss_bbox': tensor(0.1614, device='cuda:0'), 'train_loss_giou': tensor(0.5991, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3522, device='cuda:0'), 'validation_loss_ce': tensor(0.4847, device='cuda:0'), 'validation_loss_bbox': tensor(0.1584, device='cuda:0'), 'validation_loss_giou': tensor(0.5377, device='cuda:0'), 'validation_cardinality_error': tensor(1.1227, device='cuda:0')}
Validation process
{'validation_loss': tensor(6.1819, device='cuda:0'), 'validation_loss_ce': tensor(2.1987, device='cuda:0'), 'validation_loss_bbox': tensor(0.4528, device='cuda:0'), 'validation_loss_giou': tensor(0.8597, device='cuda:0'), 'validation_cardinality_error': tensor(97.7500, device='cuda:0')}
{'training_loss': tensor(2.0822, device='cuda:0'), 'train_loss_ce': tensor(0.5032, device='cuda:0'), 'train_loss_bbox': tensor(0.1356, device='cuda:0'), 'train_loss_giou': tensor(0.4505, device='cuda:0'), 'train_cardinality_error': tensor(1.0625, device='cuda:0'), 'validation_loss': tensor(2.3906, device='cuda:0'), 'validation_loss_ce': tensor(0.5131, device='cuda:0'), 'validation_loss_bbox': tensor(0.1641, device='cuda:0'), 'validation_loss_giou': tensor(0.5285, device='cuda:0'), 'validation_cardinality_error': tensor(1.1227, device='cuda:0')}
{'training_loss': tensor(2.5546, device='cuda:0'), 'train_loss_ce': tensor(0.5681, device='cuda:0'), 'train_loss_bbox': tensor(0.1646, device='cuda:0'), 'train_loss_giou': tensor(0.5818, device='cuda:0'), 'train_cardinality_error': tensor(1.2500, device='cuda:0'), 'validation_loss': tensor(2.4028, device='cuda:0'), 'validation_loss_ce': tensor(0.5090, device='cuda:0'), 'validation_loss_bbox': tensor(0.1696, device='cuda:0'), 'validation_loss_giou': tensor(0.5230, device='cuda:0'), 'validation_cardinality_error': tensor(1.1227, device='cuda:0')}
{'training_loss': tensor(2.4528, device='cuda:0'), 'train_loss_ce': tensor(0.4475, device='cuda:0'), 'train_loss_bbox': tensor(0.1614, device='cuda:0'), 'train_loss_giou': tensor(0.5991, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3522, device='cuda:0'), 'validation_loss_ce': tensor(0.4847, device='cuda:0'), 'validation_loss_bbox': tensor(0.1584, device='cuda:0'), 'validation_loss_giou': tensor(0.5377, device='cuda:0'), 'validation_cardinality_error': tensor(1.1227, device='cuda:0')}
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support