Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

# use google/gemma-7b if you have access
#base_model: mhenrichsen/gemma-7b
base_model: google/gemma-7b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

hub_model_id: MaziyarPanahi/gemma-7b-Open-Hermes-v0.1
hf_use_auth_token: true

load_in_8bit: false
load_in_4bit: true
strict: false

# huggingface repo
datasets:
  - path: teknium/openhermes
    type: alpaca
val_set_size: 0.1
output_dir: ./qlora-gemma-7b-openhermes

adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true


sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:


gradient_accumulation_steps: 3
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

gemma-7b-Open-Hermes-v0.1

This model is a fine-tuned version of google/gemma-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4456

How to use

PEFT

from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM

model_id = "MaziyarPanahi/gemma-7b-Open-Hermes-v0.1"

config = PeftConfig.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
model = PeftModel.from_pretrained(model, model_id)

Transformers

# Use a pipeline as a high-level helper
from transformers import pipeline

model_id = "MaziyarPanahi/gemma-7b-Open-Hermes-v0.1"

pipe = pipeline("text-generation", model=model_id)

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 24
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 227
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.3258 0.0 1 1.9697
0.63 0.25 2277 1.5227
0.642 0.5 4554 1.4835
0.7721 0.75 6831 1.4456

Framework versions

  • PEFT 0.8.2
  • Transformers 4.39.0.dev0
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.0
Downloads last month
43
Safetensors
Model size
8.54B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MaziyarPanahi/gemma-7b-Open-Hermes-v0.1

Base model

google/gemma-7b
Adapter
(9010)
this model

Dataset used to train MaziyarPanahi/gemma-7b-Open-Hermes-v0.1

Collection including MaziyarPanahi/gemma-7b-Open-Hermes-v0.1