bert-base-multilingual-cased-finetuned-ner
This model is a fine-tuned version of bert-base-multilingual-cased on the wikiann dataset. It achieves the following results on the evaluation set:
- Loss: 0.2299
- Precision: 0.8327
- Recall: 0.8515
- F1: 0.8420
- Accuracy: 0.9347
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.6617 | 0.16 | 100 | 0.3490 | 0.7259 | 0.7730 | 0.7487 | 0.8983 |
0.341 | 0.32 | 200 | 0.2942 | 0.7665 | 0.8052 | 0.7854 | 0.9121 |
0.3052 | 0.48 | 300 | 0.2821 | 0.7694 | 0.8021 | 0.7854 | 0.9152 |
0.2938 | 0.64 | 400 | 0.2700 | 0.7897 | 0.8122 | 0.8008 | 0.9206 |
0.2685 | 0.8 | 500 | 0.2482 | 0.7901 | 0.8253 | 0.8073 | 0.9242 |
0.2622 | 0.96 | 600 | 0.2478 | 0.7989 | 0.8298 | 0.8141 | 0.9250 |
0.2154 | 1.12 | 700 | 0.2456 | 0.8126 | 0.8365 | 0.8244 | 0.9273 |
0.2046 | 1.28 | 800 | 0.2429 | 0.8079 | 0.8335 | 0.8205 | 0.9270 |
0.2114 | 1.44 | 900 | 0.2377 | 0.8125 | 0.8415 | 0.8268 | 0.9300 |
0.2111 | 1.6 | 1000 | 0.2381 | 0.8231 | 0.8397 | 0.8313 | 0.9309 |
0.1934 | 1.76 | 1100 | 0.2349 | 0.8179 | 0.8485 | 0.8329 | 0.9308 |
0.1972 | 1.92 | 1200 | 0.2293 | 0.8287 | 0.8446 | 0.8366 | 0.9332 |
0.1858 | 2.08 | 1300 | 0.2366 | 0.8280 | 0.8463 | 0.8371 | 0.9327 |
0.1506 | 2.24 | 1400 | 0.2392 | 0.8255 | 0.8505 | 0.8378 | 0.9332 |
0.1508 | 2.4 | 1500 | 0.2346 | 0.8266 | 0.8465 | 0.8364 | 0.9334 |
0.1674 | 2.56 | 1600 | 0.2329 | 0.8249 | 0.8487 | 0.8366 | 0.9329 |
0.1584 | 2.72 | 1700 | 0.2309 | 0.8316 | 0.8508 | 0.8411 | 0.9341 |
0.154 | 2.88 | 1800 | 0.2299 | 0.8327 | 0.8515 | 0.8420 | 0.9347 |
Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu102
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 459
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Dataset used to train MayaGalvez/bert-base-multilingual-cased-finetuned-ner
Evaluation results
- Precision on wikiannself-reported0.833
- Recall on wikiannself-reported0.852
- F1 on wikiannself-reported0.842
- Accuracy on wikiannself-reported0.935