See axolotl config
axolotl version: 0.7.0
base_model: mistralai/Mistral-Small-24B-Instruct-2501
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
model_config:
trust_remote_code: true
tokenizer:
pad_token: "</s>"
padding_side: "right"
datasets:
- path: data/data.jsonl
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
load_in_4bit: true
adapter: qlora
lora_r: 64
lora_alpha: 32
lora_dropout: 0.1
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
wandb_project: mawzilla
wandb_name: Purring-stats
val_set_size: 0.01
evals_per_epoch: 2
eval_sample_packing: false
eval_max_new_tokens: 128
lora_modules_to_save:
- embed_tokens
- lm_head
bf16: true
flash_attention: true
flash_attn_implementation: "flash_attention_2"
gradient_checkpointing: true
deepspeed: deepspeed_configs/zero3.json
gradient_accumulation_steps: 4
micro_batch_size: 8
num_epochs: 1.5
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 1e-5
warmup_ratio: 0.03
max_seq_length: 8192
pad_to_sequence_len: false
sample_packing: false
output_dir: ./output
save_steps: 100
logging_steps: 10
save_safetensors: true
special_tokens:
pad_token: "<|finetune_right_pad_id|>"
eos_token: "<|eot_id|>"
output
This model is a fine-tuned version of mistralai/Mistral-Small-24B-Instruct-2501 on the data/data.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 2.1094
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 13
- num_epochs: 1.5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0035 | 1 | 2.8304 |
2.1716 | 0.5017 | 145 | 2.1812 |
2.1088 | 1.0035 | 290 | 2.1094 |
Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Mawdistical/Mawdistic-Purrvance-LoRa
Base model
mistralai/Mistral-Small-24B-Base-2501