See axolotl config
axolotl version: 0.7.0
base_model: mistralai/Mistral-Small-24B-Instruct-2501
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
model_config:
trust_remote_code: true
tokenizer:
pad_token: "</s>"
padding_side: "right"
datasets:
- path: data/data.jsonl
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
roles:
user: ["user"]
assistant: ["assistant"]
load_in_4bit: true
adapter: qlora
lora_r: 64
lora_alpha: 32
lora_dropout: 0.1
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
wandb_project: mawzilla
wandb_name: Purring-stats
val_set_size: 0.01
evals_per_epoch: 2
eval_sample_packing: false
eval_max_new_tokens: 128
bf16: true
flash_attention: true
flash_attn_implementation: "flash_attention_2"
gradient_checkpointing: true
deepspeed: deepspeed_configs/zero3.json
gradient_accumulation_steps: 4
micro_batch_size: 8
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 1e-5
warmup_ratio: 0.03
max_seq_length: 8192
pad_to_sequence_len: false
sample_packing: false
output_dir: ./output
save_steps: 100
logging_steps: 10
save_safetensors: true
special_tokens:
pad_token: "</s>"
output
This model is a fine-tuned version of mistralai/Mistral-Small-24B-Instruct-2501 on the data/data.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 1.9389
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 28
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0031 | 1 | 2.7696 |
2.187 | 0.5012 | 160 | 2.1111 |
2.1016 | 1.0 | 320 | 2.0063 |
1.9829 | 1.5012 | 480 | 1.9645 |
1.9534 | 2.0 | 640 | 1.9441 |
1.8833 | 2.5012 | 800 | 1.9389 |
Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Mawdistical/Mawdistic-NightLife-LoRa
Base model
mistralai/Mistral-Small-24B-Base-2501