emotion_classification_adjusted

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8104
  • Accuracy: 0.8875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 60
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Accuracy Validation Loss
2.0787 1.0 20 0.1625 2.0753
2.073 2.0 40 0.1187 2.0737
2.0599 3.0 60 0.1938 2.0585
2.0363 4.0 80 0.1938 2.0368
2.0051 5.0 100 0.2625 1.9921
1.9348 6.0 120 0.3375 1.9185
1.8466 7.0 140 0.375 1.8056
1.755 8.0 160 0.4313 1.7292
1.676 9.0 180 0.45 1.6674
1.6244 10.0 200 0.475 1.6237
1.5661 11.0 220 0.5062 1.5973
1.5252 12.0 240 0.5 1.5262
1.4729 13.0 260 0.55 1.5050
1.4203 14.0 280 0.55 1.4784
1.364 15.0 300 0.525 1.5131
1.3262 16.0 320 0.5125 1.4776
1.3102 17.0 340 0.5563 1.4200
1.2595 18.0 360 0.5563 1.4329
1.2188 19.0 380 0.5375 1.4213
1.1991 20.0 400 0.525 1.4077
1.1526 21.0 420 0.6062 1.3625
1.1225 22.0 440 0.5437 1.3745
1.1283 23.0 460 0.5375 1.3677
1.0856 24.0 480 0.5625 1.3283
1.0559 25.0 500 0.5687 1.3440
1.0102 26.0 520 0.5437 1.3357
0.9915 27.0 540 0.5813 1.3377
0.9807 28.0 560 0.55 1.3824
0.9382 29.0 580 0.4938 1.4468
0.9857 30.0 600 0.8125 0.9923
0.9956 31.0 620 0.7625 1.0361
0.9875 32.0 640 0.775 1.0310
0.9582 33.0 660 0.7625 1.0572
0.9649 34.0 680 0.8063 0.9725
0.9099 35.0 700 0.7562 1.0355
0.9339 36.0 720 0.7937 1.0129
0.9045 37.0 740 0.7562 1.0315
0.8903 38.0 760 0.8187 0.9923
0.8799 39.0 780 0.7625 1.0386
0.8664 40.0 800 0.7438 1.0626
0.8351 41.0 820 0.7688 0.9885
0.8514 42.0 840 0.7875 0.9975
0.857 43.0 860 0.75 1.0169
0.8331 44.0 880 0.7937 0.9763
0.8093 45.0 900 0.7937 0.9645
0.8303 46.0 920 0.8 0.9880
0.8077 47.0 940 0.8063 1.0094
0.8082 48.0 960 0.7937 0.9757
0.8088 49.0 980 0.7438 1.0451
0.7985 50.0 1000 0.7875 0.9850
0.8013 51.0 1020 0.7688 1.0362
0.7882 52.0 1040 0.775 1.0007
0.8051 53.0 1060 0.7438 1.0314
0.812 54.0 1080 0.8 0.9782
0.7895 55.0 1100 0.725 1.0396
0.8012 56.0 1120 0.7688 0.9894
0.7973 57.0 1140 0.7875 0.9981
0.7946 58.0 1160 0.8063 0.9754
0.8437 59.0 1180 0.85 0.8544
0.8489 60.0 1200 0.7991 0.9062

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
34
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for MarfinF/emotion_classification_adjusted

Finetuned
(2292)
this model

Evaluation results