wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5816
  • Wer: 0.3533

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.243 0.5 500 1.0798 0.7752
0.834 1.01 1000 0.6206 0.5955
0.5503 1.51 1500 0.5387 0.5155
0.4548 2.01 2000 0.4660 0.4763
0.3412 2.51 2500 0.8381 0.4836
0.3128 3.02 3000 0.4818 0.4519
0.2547 3.52 3500 0.4415 0.4230
0.2529 4.02 4000 0.4624 0.4219
0.2103 4.52 4500 0.4714 0.4096
0.2102 5.03 5000 0.4968 0.4087
0.1838 5.53 5500 0.4643 0.4131
0.1721 6.03 6000 0.4676 0.3979
0.1548 6.53 6500 0.4765 0.4085
0.1595 7.04 7000 0.4797 0.3941
0.1399 7.54 7500 0.4753 0.3902
0.1368 8.04 8000 0.4697 0.3945
0.1276 8.54 8500 0.5438 0.3869
0.1255 9.05 9000 0.5660 0.3841
0.1077 9.55 9500 0.4964 0.3947
0.1197 10.05 10000 0.5349 0.3849
0.1014 10.55 10500 0.5558 0.3883
0.0949 11.06 11000 0.5673 0.3785
0.0882 11.56 11500 0.5589 0.3955
0.0906 12.06 12000 0.5752 0.4120
0.1064 12.56 12500 0.5080 0.3727
0.0854 13.07 13000 0.5398 0.3798
0.0754 13.57 13500 0.5237 0.3816
0.0791 14.07 14000 0.4967 0.3725
0.0731 14.57 14500 0.5287 0.3744
0.0719 15.08 15000 0.5633 0.3596
0.062 15.58 15500 0.5399 0.3752
0.0681 16.08 16000 0.5151 0.3759
0.0559 16.58 16500 0.5564 0.3709
0.0533 17.09 17000 0.5933 0.3743
0.0563 17.59 17500 0.5381 0.3670
0.0527 18.09 18000 0.5685 0.3731
0.0492 18.59 18500 0.5728 0.3725
0.0509 19.1 19000 0.6074 0.3807
0.0436 19.6 19500 0.5762 0.3628
0.0434 20.1 20000 0.6721 0.3729
0.0416 20.6 20500 0.5842 0.3700
0.0431 21.11 21000 0.5374 0.3607
0.037 21.61 21500 0.5556 0.3667
0.036 22.11 22000 0.5608 0.3592
0.04 22.61 22500 0.5272 0.3637
0.047 23.12 23000 0.5234 0.3625
0.0506 23.62 23500 0.5427 0.3629
0.0418 24.12 24000 0.5590 0.3626
0.037 24.62 24500 0.5615 0.3555
0.0429 25.13 25000 0.5806 0.3616
0.045 25.63 25500 0.5777 0.3639
0.0283 26.13 26000 0.5987 0.3617
0.0253 26.63 26500 0.5671 0.3551
0.032 27.14 27000 0.5464 0.3582
0.0321 27.64 27500 0.5634 0.3573
0.0274 28.14 28000 0.5513 0.3575
0.0245 28.64 28500 0.5745 0.3537
0.0251 29.15 29000 0.5759 0.3547
0.0222 29.65 29500 0.5816 0.3533

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
33
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support