New attempt
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2_2.zip +2 -2
- ppo-LunarLander-v2_2/data +3 -3
- ppo-LunarLander-v2_2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2_2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 276.99 +/- 15.65
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b3c7af124d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b3c7af12560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b3c7af125f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b3c7af12680>", "_build": "<function ActorCriticPolicy._build at 0x7b3c7af12710>", "forward": "<function ActorCriticPolicy.forward at 0x7b3c7af127a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b3c7af12830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b3c7af128c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b3c7af12950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b3c7af129e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b3c7af12a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b3c7af12b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b3c7af18480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713694274245904148, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJMalT7EEpU//newvS+/tr2S5Cy8crmuuwAAAAAAAAAAGmy7PWiUoT/uUTU92RXLvUA/Wzz9LrO8AAAAAAAAAAAae729C/OkP0bgKb9XXYS+RU3PPUGSwz0AAAAAAAAAAE1ThD0fLeu5rziIOrd4JTYIbtY5oyyeuQAAgD8AAIA/AGuZPJeBVz6tzI+8f476vV6IBT0FQnI9AAAAAAAAAAAzCFo+yJiuO1KDrzun/jk5g2BNPdIHEjoAAIA/AACAP7jh7b4RL5k/U+8gPYworjzdNIK8Pp43vQAAAAAAAAAAOj8FPnEYHLtArFG60zsMNx2EWrwi2Xs5AACAPwAAgD+Nz5E9FPNnPoA2Mz3GdQK+tZ0xPPCqfD0AAAAAAAAAAHPqiD3Errg+GRCDOzH8Cb0JabS8bYEavQAAAAAAAAAAel5Nvj9bcD/Cpm882FMEvcvCvbylInE9AAAAAAAAAAATxyK+Fr2LP0tbXL0n3e69TzAtvauoj70AAAAAAAAAAPbPU76vYZA/gOt7vCc6mr3D5Fu8XGnGOwAAAAAAAAAAJtL1vRJrlj+K6bA8kyeGvX2/LryjIC09AAAAAAAAAAANIc09J8w9PtKmx7wk+X69qqbIumm4ljwAAAAAAAAAAKb8sb3XXCW74iKqPFGzAj25VQe8Q1bcPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI8OutQsPJ+MAWyUTdMDjAF0lEdAe7FobXHzYnV9lChoBkdAiX7mzjWCmWgHTegDaAhHQHu0qS5iExt1fZQoaAZHQIMhFpZfUnZoB03oA2gIR0B7tjYg7o0RdX2UKGgGR0CItLrGipNsaAdN6ANoCEdAe7lf/3nIQ3V9lChoBkdAjgLqGUOd5WgHTegDaAhHQHu6LOE/Spl1fZQoaAZHQJGZxjawljVoB03oA2gIR0B7vAeii7CjdX2UKGgGR0CQjs+CsfaIaAdN6ANoCEdAe8C06YE4enV9lChoBkdAjIU78Nx2jmgHTUwDaAhHQHvCanm7rcF1fZQoaAZHQIWq5WJaaCtoB03oA2gIR0B7yLi4rjHXdX2UKGgGR0CLpUwmmce9aAdN6ANoCEdAe8kvRZ2ZA3V9lChoBkdAfYN5BC2MKmgHTegDaAhHQHvKU7CBPKx1fZQoaAZHQH63Xggow25oB03oA2gIR0B7zOhPCVKPdX2UKGgGR0CQAms1baAXaAdN6ANoCEdAe84wmVqveXV9lChoBkdAjE6O45Lh72gHTegDaAhHQHvQnkLhJiB1fZQoaAZHQHdZWS+xnnNoB03oA2gIR0B70zWy1NQCdX2UKGgGR0CLnTf3vhIfaAdN6ANoCEdAfCCOuaF23nV9lChoBkdAiHTD4QBgeGgHTegDaAhHQHwiLOmixml1fZQoaAZHQH21sP4EfT1oB030AmgIR0B8I4Ovt+kQdX2UKGgGR0CBilGT9sJqaAdN6ANoCEdAfCXWyTpxFXV9lChoBkdAfAItGus90WgHTZYCaAhHQHwmUwvg3tN1fZQoaAZHQI4gVrAP/aRoB03oA2gIR0B8J3CvX9R8dX2UKGgGR0B6fUdELH+7aAdNLgJoCEdAfCiePaL4vnV9lChoBkdAgjZykTHsC2gHTegDaAhHQHwqqx1PnCB1fZQoaAZHQIroZ17pmmNoB03oA2gIR0B8K3nbItDldX2UKGgGR0CDtEBBAv+PaAdN6ANoCEdAfDIb3XZoPHV9lChoBkdAhgosQd0aImgHTegDaAhHQHw6noPkJa91fZQoaAZHQITZ9B+nZTRoB03oA2gIR0B8PC9vjwQUdX2UKGgGR0CO+14agmJFaAdN6ANoCEdAfD/sT37DVHV9lChoBkdAjS4dQGfPHGgHTegDaAhHQHxBy9du5z51fZQoaAZHQIpAswJw84hoB03oA2gIR0B8RURtgrpadX2UKGgGR0CJi+NgBtDVaAdN6ANoCEdAfEie1KGtZHV9lChoBkdAhSk0tRNypGgHTegDaAhHQHybk3XI2fl1fZQoaAZHQIuqSMJhOQBoB03oA2gIR0B8nQLE1l5GdX2UKGgGR0CIn1MN+b3HaAdN6ANoCEdAfJ44k/r0KHV9lChoBkdAiND6ews5GWgHTegDaAhHQHygdIoVmBh1fZQoaAZHQIRqLpiZv1loB03oA2gIR0B8oPB7/n4gdX2UKGgGR0CQPVPDHfdiaAdN6ANoCEdAfKIeD3/PxHV9lChoBkdAi4eJtBOYY2gHTegDaAhHQHyjPn0TURZ1fZQoaAZHQI3p7Ub1h9doB03oA2gIR0B8pUGlhw2mdX2UKGgGR0BuvNtXPqs2aAdN6ANoCEdAfKYPvKEFn3V9lChoBkdAiOAt83Mpw2gHTQoDaAhHQHysX9WIXTF1fZQoaAZHQIia2t4iX6ZoB03oA2gIR0B8rNiCrcTKdX2UKGgGR0CKA9VwPy08aAdN9QJoCEdAfK9MvAXVLHV9lChoBkdAiO8SCvovBmgHTegDaAhHQHy2P47A+IN1fZQoaAZHQIu9C1G9YfZoB03oA2gIR0B8ulENOM2ndX2UKGgGR0CG5HbFjurqaAdN+wJoCEdAfLzDv3JxN3V9lChoBkdAiXwA/C66KGgHTegDaAhHQHy8v4mCyyF1fZQoaAZHQIJP3NJOFg5oB026AmgIR0B8vM9eQdS3dX2UKGgGR0CRFCyHVPN3aAdN6ANoCEdAfL8isGPgenV9lChoBkdAlLD2g8KXwGgHTegDaAhHQH0TAqZtvXN1fZQoaAZHQIRcBof0VahoB03oA2gIR0B9FVmnO0LMdX2UKGgGR0CIQF2OhkAhaAdN6ANoCEdAfRoornTy8XV9lChoBkdAi7ebzCk43mgHTaQDaAhHQH0aJZGKAJ91fZQoaAZHQIIxR0KZ2IRoB03oA2gIR0B9G9ffGdZrdX2UKGgGR0CJ2LSro4dZaAdN6ANoCEdAfR8hhH9WIXV9lChoBkdAju8GP5pJw2gHTegDaAhHQH0f82rGR3h1fZQoaAZHQIAB6mj0tiBoB03oA2gIR0B9JiU6gdwOdX2UKGgGR0COlzzMA3kxaAdN6ANoCEdAfSaazNUwSXV9lChoBkdAh6IdN34bj2gHTegDaAhHQH0pBW1c+q11fZQoaAZHQJCOz1qWTotoB03oA2gIR0B9MFRm9QGfdX2UKGgGR0CI3HB9Cu2aaAdN6ANoCEdAfTR7FsHjZXV9lChoBkdAh4/Yu9OARWgHTegDaAhHQH03Ieo1k2B1fZQoaAZHQIisxKjBVMpoB03oA2gIR0B9NyAYpDu0dX2UKGgGR0CDye+0PYnOaAdN6ANoCEdAfTcsT37DVHV9lChoBkdAfzcNcnmaIGgHTegDaAhHQH05jGo73f11fZQoaAZHQIhEEXvYvnNoB03oA2gIR0B9iGFvhqCZdX2UKGgGR0CAvNEXtShraAdN6ANoCEdAfYnS8an753V9lChoBkdAhsy57ojfN2gHTegDaAhHQH2NNxQzk6t1fZQoaAZHQIgZzHdXT3JoB03oA2gIR0B9jTQkX1rZdX2UKGgGR0CQTWtfXwsoaAdN6ANoCEdAfY75jYqXnnV9lChoBkdAgXv2jwhGIGgHTegDaAhHQH2SS/0ulGh1fZQoaAZHQJFZ0kQf6oFoB03oA2gIR0B9kyR4hUzbdX2UKGgGR0CEoAsEJSiuaAdN6ANoCEdAfZl7w8W9DnV9lChoBkdAjgZIBq9GqmgHTegDaAhHQH2aBh+fAbh1fZQoaAZHQIk7P+GXXy1oB03oA2gIR0B9nH3cpLEldX2UKGgGR0CLUGJEYwZgaAdN6ANoCEdAfaPqGDcuanV9lChoBkdAhaar3bmEG2gHTegDaAhHQH2n+A7Pppx1fZQoaAZHQI3f8LSeAd5oB03oA2gIR0B9qo9Pk7wKdX2UKGgGR0CKTaIrOJLvaAdN6ANoCEdAfaqOG0u14XV9lChoBkdAk+0DKgZjx2gHTegDaAhHQH2qnBtUGV11fZQoaAZHQIFAI8W9DhNoB03oA2gIR0B9rSGWUr08dX2UKGgGR0CLRpMJQcghaAdN6ANoCEdAfgY5bhWHUXV9lChoBkdAetJ/bj94vGgHTegDaAhHQH4H+8f3evZ1fZQoaAZHQJECimbb1yxoB03oA2gIR0B+C3LLZBcBdX2UKGgGR0CC7cpcX3xnaAdN6ANoCEdAfgtvoNd7fHV9lChoBkdAhsU7hNucc2gHTegDaAhHQH4NB9XtBv91fZQoaAZHQIUENlI3BHloB03oA2gIR0B+EFK15Sm7dX2UKGgGR0CDpWFyq+8HaAdN6ANoCEdAfhErcTJyQ3V9lChoBkdAeMFQnx8UmGgHTe4BaAhHQH4T6ziS7oV1fZQoaAZHQIYeTasZHd5oB03oA2gIR0B+F+cWj45+dX2UKGgGR0CNPtDdgv12aAdN6ANoCEdAfhhuSwGGEnV9lChoBkdAjhc0YKpkw2gHTegDaAhHQH4bF2icoYx1fZQoaAZHQHB4+/5+H8FoB00cAmgIR0B+IiHGjsUqdX2UKGgGR0CEA87HQyAQaAdN6ANoCEdAfiK84xUNrnV9lChoBkdAhUwW7e2uxWgHTXoCaAhHQH4mic0+C9R1fZQoaAZHQJAzT9ETg2toB03oA2gIR0B+Jx0EHMUzdX2UKGgGR0CCkBEcbR4RaAdN6ANoCEdAfim+eOGTLXV9lChoBkdAgYEE7W/ag2gHTegDaAhHQH4pvU4JeE91fZQoaAZHQHXof82rGR5oB03oA2gIR0B+LFBZ6lchdX2UKGgGR0CQ0V9FnZkDaAdN6ANoCEdAfjD5I6KceHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b3c7af124d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b3c7af12560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b3c7af125f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b3c7af12680>", "_build": "<function ActorCriticPolicy._build at 0x7b3c7af12710>", "forward": "<function ActorCriticPolicy.forward at 0x7b3c7af127a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b3c7af12830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b3c7af128c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b3c7af12950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b3c7af129e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b3c7af12a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b3c7af12b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b3c7af18480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713696479775946567, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZIvL0p6EC6rRcmOjv58Dempvg5pBpHuQAAgD8AAIA/mva+PXtehLo9lnA4LhWStmdR2zqoIoi3AACAPwAAgD+tHxE+0lKMu8Dbnrv72ek4vOC6vAccvjoAAIA/AACAPxqkAb49wAa7tHwTuzQvG7jLdWQ89Kg0OgAAgD8AAIA/zRlYPY8+Srp8XTI3ic2NsPaMG7p2z022AACAPwAAgD8Ac7M9KdgRuoOVkjvJSpU1hBunOp9iqroAAIA/AACAP6bKh71cpyu6l4mHvIuN27h0qfW6aiVHOAAAgD8AAIA/JsGFvYUj1rnSvoS7xKbctb13qbn2aJk6AACAPwAAgD+jsV++Bg2cP+39xL60LFO/nBM4vlu2iL4AAAAAAAAAAMCXtz2P0hC6SI6JuxGbCzUfgvG6lmegOgAAgD8AAAAA+koSPrh+njgwBoY7sRQkPE3MLTwzgAe9AACAPwAAgD/N7Ig8KbRKuk3J1jpnsVw2sAMSOz6F+LkAAIA/AACAP7OuQr0fDfy5XmlvvKtGbTac8ZI5gpzXtQAAgD8AAIA/AJ6iPHt6p7olQRU4iTQIM0t5mLqhUCu3AACAPwAAgD/mUgi+pExeu0J5PTuV9qM40EykPGufb7oAAIA/AAAAABbpqT5/Loe9s/msPCT4Fr1vELO+vlHWvQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGFBgUlAu7KMAWyUTegDjAF0lEdAfCYvfTCtR3V9lChoBkdAZFW94eLeh2gHTegDaAhHQHwnHKbKA8V1fZQoaAZHQEXXVurIYFdoB0tfaAhHQHwnh7u2JBR1fZQoaAZHQGXViaiKziVoB03oA2gIR0B8KGPYFqzrdX2UKGgGR0ArYWgOBlMAaAdLZmgIR0B8exhfBvaUdX2UKGgGR0Bd+9mxt52RaAdN6ANoCEdAfHw1Iy0rsnV9lChoBkdAWhTUqhDgImgHTegDaAhHQHx+O14Pf9B1fZQoaAZHQFdJqv/zasZoB03oA2gIR0B8ggpG4I8hdX2UKGgGR0BkPL7/GVAzaAdN6ANoCEdAfIaF/QSi/XV9lChoBkdAYds2dd3Sr2gHTegDaAhHQHyNyq2jO9p1fZQoaAZHQGodE9lmOENoB014AWgIR0B8j+goPTXrdX2UKGgGR0BhhNiQT238aAdN6ANoCEdAfJM8lolD4XV9lChoBkdAZ4/V4oqkM2gHTegDaAhHQHyajgQ6IWR1fZQoaAZHQGS8GuDBdldoB03oA2gIR0B8mrvnbItEdX2UKGgGR0BgS8q2BreqaAdN6ANoCEdAfJzm7aqS5nV9lChoBkdAYPxVd5Y5k2gHTegDaAhHQHydwpz90ih1fZQoaAZHQGFM+aa1Cw9oB03oA2gIR0B8n2+RHPNWdX2UKGgGR0BcKH2qT8pDaAdN6ANoCEdAfKHwWnCO3nV9lChoBkdAU8bC/GlyimgHTegDaAhHQHylrH6uW8h1fZQoaAZHQCwSsCDEm6ZoB0tnaAhHQHymcXSBshx1fZQoaAZHQGNL21lXiitoB03oA2gIR0B8pwnH/95ydX2UKGgGR0BlneZmZmZmaAdN6ANoCEdAfKfjjJdSl3V9lChoBkdAXr+ItUXHimgHTegDaAhHQHz5JVOsT391fZQoaAZHQDRPMr3Cbc5oB0tcaAhHQHz5Tho/Rmd1fZQoaAZHQGTglWXC0nhoB03oA2gIR0B8+pmZmZmadX2UKGgGR0BdCUhvBJqZaAdN6ANoCEdAfP0fWcz68HV9lChoBkdAYUR2aDwpfGgHTegDaAhHQHz/0sSTQmh1fZQoaAZHQGIQycLBsRBoB03oA2gIR0B9BrWEsasIdX2UKGgGR0BljPCqIacaaAdN6ANoCEdAfQimKqGUOnV9lChoBkdAZq+lXRw6yWgHTegDaAhHQH0L6T0QK8d1fZQoaAZHQEDCw9q1w5xoB0umaAhHQH0TLp/wy7B1fZQoaAZHQGXaBEBsANpoB03oA2gIR0B9E2ZE2HcldX2UKGgGR0Bhgj3Ehq0uaAdN6ANoCEdAfROUeuFHrnV9lChoBkdAYQuBJZntfGgHTegDaAhHQH0VyNS619h1fZQoaAZHQF9iksSTQmhoB03oA2gIR0B9FqE12q1gdX2UKGgGR0Bj8Uq2BreqaAdN6ANoCEdAfRhL7XQMQXV9lChoBkfAXkoVN5+pfmgHS+1oCEdAfR2UT+NtInV9lChoBkdAYlO6reZXuGgHTegDaAhHQH0eU+gUUPB1fZQoaAZHQGDF1+I/JNloB03oA2gIR0B9HxNM495hdX2UKGgGR0BiOfT9bX6JaAdN6ANoCEdAfR+vs7dSEXV9lChoBkdARRhpeu3c6GgHS3JoCEdAfSNj4593KXV9lChoBkdAY6dhGYrrgWgHTegDaAhHQH0kelwcYIl1fZQoaAZHQB04N7SiM5xoB03oA2gIR0B9JKBUaQ3hdX2UKGgGR0BouQz7/GVBaAdN6ANoCEdAfXpfNA1NxnV9lChoBkdAXjkbWEsasWgHTegDaAhHQH184ao/A0t1fZQoaAZHQGKw52hZha1oB03oA2gIR0B9f5BIFvAHdX2UKGgGR0BqnhXdTHbRaAdNhwFoCEdAfYRl+EytWHV9lChoBke/8hU3n6l+E2gHS3JoCEdAfYR3XI2fkHV9lChoBkdAZWvHmzSkTGgHTegDaAhHQH2GiQgcLjR1fZQoaAZHQGCAuVX3g1poB03oA2gIR0B9iH7JnxrjdX2UKGgGR0Bg5GxW1c+raAdN6ANoCEdAfZL6tT1kD3V9lChoBkdAXJB40Mw1zmgHTegDaAhHQH2TW+Cbtqp1fZQoaAZHQF1yp6QeV9poB03oA2gIR0B9lZLDhtLtdX2UKGgGR0BkibvRZ2ZBaAdN6ANoCEdAfZaNLlFMI3V9lChoBkdAYF1XjlxOtWgHTegDaAhHQH2YS/fwZwZ1fZQoaAZHQGUgT6i0v5BoB03oA2gIR0B9nb5vcafjdX2UKGgGR0BiwWd/axoqaAdN6ANoCEdAfZ/eHzpX63V9lChoBkdAYBAALApKBmgHTegDaAhHQH2ja99MK1J1fZQoaAZHQGFSc8cMmWtoB03oA2gIR0B9pItapxWDdX2UKGgGR0BkgwqNIbwSaAdN6ANoCEdAfaS6E8JUpHV9lChoBkdAYYdn9vS+g2gHTegDaAhHQH2l/1pTMq11fZQoaAZHQF26KT0QK8doB03oA2gIR0B99upFTefqdX2UKGgGR8BABXwCr92paAdLgmgIR0B995/WlMyrdX2UKGgGR0BhluH31zySaAdN6ANoCEdAfgJrlNlAeXV9lChoBkdAaGtD8cdYGWgHTegDaAhHQH4Cj0lJHy51fZQoaAZHQGMCsYMvysloB03oA2gIR0B+Bct6HCXQdX2UKGgGR0BtfQKpkwvhaAdNSAFoCEdAfgaP2wmmcnV9lChoBkdAYOC67ulXR2gHTegDaAhHQH4HyFPBSDR1fZQoaAZHwDUjiiqQzUJoB0tdaAhHQH4J+yzHCGh1fZQoaAZHwCcRkI5YHPhoB0tpaAhHQH4LNOdoWYZ1fZQoaAZHQGXb0Ouq3mVoB03oA2gIR0B+EjLZBcAzdX2UKGgGR0BiqyElE7W/aAdN6ANoCEdAfhKQzk6tDHV9lChoBkdAZaMQPqcEvGgHTegDaAhHQH4Uwb2lEZ11fZQoaAZHQGHotEG7jDNoB03oA2gIR0B+FZqmCROldX2UKGgGRz/xREBsANobaAdLWWgIR0B+Fg9gWrOrdX2UKGgGR0Bg2ChzvJA/aAdN6ANoCEdAfhdOrQw9JXV9lChoBkdAbpCWAwwj+2gHTS4CaAhHQH4cLsWweNl1fZQoaAZHQGJllotcv/RoB03oA2gIR0B+HOO2iL2pdX2UKGgGR8BfIT7ALy+YaAdNBQFoCEdAfh4Xj2i+L3V9lChoBkdAYJpUKArhBWgHTegDaAhHQH4e/NFBppN1fZQoaAZHQGE1Xcxj8UFoB03oA2gIR0B+I8QL/jsEdX2UKGgGR0Biv+i+L3sYaAdN6ANoCEdAfiU5imVJMHV9lChoBkdASTUewLVnVWgHTegDaAhHQH5yerZJ04l1fZQoaAZHQBumn4wh4dJoB0tpaAhHQH5zGfK6nR91fZQoaAZHQGKjvCl7+kxoB03oA2gIR0B+cxbHIZIhdX2UKGgGR0BkTdn9NvfkaAdN6ANoCEdAfnplANXo1XV9lChoBkdAZYN8hLXcxmgHTegDaAhHQH5+ZMlC1JF1fZQoaAZHQC6XyEtdzGRoB0t+aAhHQH5//JRwZO11fZQoaAZHQGEAYqoZQ55oB03oA2gIR0B+gHvSc9W7dX2UKGgGR0BmATX6InBtaAdN6ANoCEdAfoG/+KjzqnV9lChoBkdAIefustCiRGgHS4VoCEdAfoYiz9jwx3V9lChoBkdAY8yqbz9S/GgHTegDaAhHQH6LYs3AEdN1fZQoaAZHQGOwe6iCaqloB03oA2gIR0B+jEH6dlNDdX2UKGgGR0BkGvLJSzgNaAdN6ANoCEdAfoy2wFC9iHV9lChoBkdAUK+wu/UONGgHTegDaAhHQH6OHk5p8F91fZQoaAZHQGFu8Gkep4toB03oA2gIR0B+kuJxeb/fdX2UKGgGR0BiestsenyeaAdN6ANoCEdAfpOpSaVlgHV9lChoBkdAZG9WS2Yv4GgHTegDaAhHQH6VCCJ40Mx1fZQoaAZHQGSMNW2gFotoB03oA2gIR0B+le8XenAJdX2UKGgGR0BjcXZTQ3PzaAdN6ANoCEdAfpwIo3JgcHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2_2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e73ebea3cfa4ac11b375ccb4da08e7573e90802d99ede2549b83f90414ff8692
|
3 |
+
size 148068
|
ppo-LunarLander-v2_2/data
CHANGED
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1713696479775946567,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZIvL0p6EC6rRcmOjv58Dempvg5pBpHuQAAgD8AAIA/mva+PXtehLo9lnA4LhWStmdR2zqoIoi3AACAPwAAgD+tHxE+0lKMu8Dbnrv72ek4vOC6vAccvjoAAIA/AACAPxqkAb49wAa7tHwTuzQvG7jLdWQ89Kg0OgAAgD8AAIA/zRlYPY8+Srp8XTI3ic2NsPaMG7p2z022AACAPwAAgD8Ac7M9KdgRuoOVkjvJSpU1hBunOp9iqroAAIA/AACAP6bKh71cpyu6l4mHvIuN27h0qfW6aiVHOAAAgD8AAIA/JsGFvYUj1rnSvoS7xKbctb13qbn2aJk6AACAPwAAgD+jsV++Bg2cP+39xL60LFO/nBM4vlu2iL4AAAAAAAAAAMCXtz2P0hC6SI6JuxGbCzUfgvG6lmegOgAAgD8AAAAA+koSPrh+njgwBoY7sRQkPE3MLTwzgAe9AACAPwAAgD/N7Ig8KbRKuk3J1jpnsVw2sAMSOz6F+LkAAIA/AACAP7OuQr0fDfy5XmlvvKtGbTac8ZI5gpzXtQAAgD8AAIA/AJ6iPHt6p7olQRU4iTQIM0t5mLqhUCu3AACAPwAAgD/mUgi+pExeu0J5PTuV9qM40EykPGufb7oAAIA/AAAAABbpqT5/Loe9s/msPCT4Fr1vELO+vlHWvQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGFBgUlAu7KMAWyUTegDjAF0lEdAfCYvfTCtR3V9lChoBkdAZFW94eLeh2gHTegDaAhHQHwnHKbKA8V1fZQoaAZHQEXXVurIYFdoB0tfaAhHQHwnh7u2JBR1fZQoaAZHQGXViaiKziVoB03oA2gIR0B8KGPYFqzrdX2UKGgGR0ArYWgOBlMAaAdLZmgIR0B8exhfBvaUdX2UKGgGR0Bd+9mxt52RaAdN6ANoCEdAfHw1Iy0rsnV9lChoBkdAWhTUqhDgImgHTegDaAhHQHx+O14Pf9B1fZQoaAZHQFdJqv/zasZoB03oA2gIR0B8ggpG4I8hdX2UKGgGR0BkPL7/GVAzaAdN6ANoCEdAfIaF/QSi/XV9lChoBkdAYds2dd3Sr2gHTegDaAhHQHyNyq2jO9p1fZQoaAZHQGodE9lmOENoB014AWgIR0B8j+goPTXrdX2UKGgGR0BhhNiQT238aAdN6ANoCEdAfJM8lolD4XV9lChoBkdAZ4/V4oqkM2gHTegDaAhHQHyajgQ6IWR1fZQoaAZHQGS8GuDBdldoB03oA2gIR0B8mrvnbItEdX2UKGgGR0BgS8q2BreqaAdN6ANoCEdAfJzm7aqS5nV9lChoBkdAYPxVd5Y5k2gHTegDaAhHQHydwpz90ih1fZQoaAZHQGFM+aa1Cw9oB03oA2gIR0B8n2+RHPNWdX2UKGgGR0BcKH2qT8pDaAdN6ANoCEdAfKHwWnCO3nV9lChoBkdAU8bC/GlyimgHTegDaAhHQHylrH6uW8h1fZQoaAZHQCwSsCDEm6ZoB0tnaAhHQHymcXSBshx1fZQoaAZHQGNL21lXiitoB03oA2gIR0B8pwnH/95ydX2UKGgGR0BlneZmZmZmaAdN6ANoCEdAfKfjjJdSl3V9lChoBkdAXr+ItUXHimgHTegDaAhHQHz5JVOsT391fZQoaAZHQDRPMr3Cbc5oB0tcaAhHQHz5Tho/Rmd1fZQoaAZHQGTglWXC0nhoB03oA2gIR0B8+pmZmZmadX2UKGgGR0BdCUhvBJqZaAdN6ANoCEdAfP0fWcz68HV9lChoBkdAYUR2aDwpfGgHTegDaAhHQHz/0sSTQmh1fZQoaAZHQGIQycLBsRBoB03oA2gIR0B9BrWEsasIdX2UKGgGR0BljPCqIacaaAdN6ANoCEdAfQimKqGUOnV9lChoBkdAZq+lXRw6yWgHTegDaAhHQH0L6T0QK8d1fZQoaAZHQEDCw9q1w5xoB0umaAhHQH0TLp/wy7B1fZQoaAZHQGXaBEBsANpoB03oA2gIR0B9E2ZE2HcldX2UKGgGR0Bhgj3Ehq0uaAdN6ANoCEdAfROUeuFHrnV9lChoBkdAYQuBJZntfGgHTegDaAhHQH0VyNS619h1fZQoaAZHQF9iksSTQmhoB03oA2gIR0B9FqE12q1gdX2UKGgGR0Bj8Uq2BreqaAdN6ANoCEdAfRhL7XQMQXV9lChoBkfAXkoVN5+pfmgHS+1oCEdAfR2UT+NtInV9lChoBkdAYlO6reZXuGgHTegDaAhHQH0eU+gUUPB1fZQoaAZHQGDF1+I/JNloB03oA2gIR0B9HxNM495hdX2UKGgGR0BiOfT9bX6JaAdN6ANoCEdAfR+vs7dSEXV9lChoBkdARRhpeu3c6GgHS3JoCEdAfSNj4593KXV9lChoBkdAY6dhGYrrgWgHTegDaAhHQH0kelwcYIl1fZQoaAZHQB04N7SiM5xoB03oA2gIR0B9JKBUaQ3hdX2UKGgGR0BouQz7/GVBaAdN6ANoCEdAfXpfNA1NxnV9lChoBkdAXjkbWEsasWgHTegDaAhHQH184ao/A0t1fZQoaAZHQGKw52hZha1oB03oA2gIR0B9f5BIFvAHdX2UKGgGR0BqnhXdTHbRaAdNhwFoCEdAfYRl+EytWHV9lChoBke/8hU3n6l+E2gHS3JoCEdAfYR3XI2fkHV9lChoBkdAZWvHmzSkTGgHTegDaAhHQH2GiQgcLjR1fZQoaAZHQGCAuVX3g1poB03oA2gIR0B9iH7JnxrjdX2UKGgGR0Bg5GxW1c+raAdN6ANoCEdAfZL6tT1kD3V9lChoBkdAXJB40Mw1zmgHTegDaAhHQH2TW+Cbtqp1fZQoaAZHQF1yp6QeV9poB03oA2gIR0B9lZLDhtLtdX2UKGgGR0BkibvRZ2ZBaAdN6ANoCEdAfZaNLlFMI3V9lChoBkdAYF1XjlxOtWgHTegDaAhHQH2YS/fwZwZ1fZQoaAZHQGUgT6i0v5BoB03oA2gIR0B9nb5vcafjdX2UKGgGR0BiwWd/axoqaAdN6ANoCEdAfZ/eHzpX63V9lChoBkdAYBAALApKBmgHTegDaAhHQH2ja99MK1J1fZQoaAZHQGFSc8cMmWtoB03oA2gIR0B9pItapxWDdX2UKGgGR0BkgwqNIbwSaAdN6ANoCEdAfaS6E8JUpHV9lChoBkdAYYdn9vS+g2gHTegDaAhHQH2l/1pTMq11fZQoaAZHQF26KT0QK8doB03oA2gIR0B99upFTefqdX2UKGgGR8BABXwCr92paAdLgmgIR0B995/WlMyrdX2UKGgGR0BhluH31zySaAdN6ANoCEdAfgJrlNlAeXV9lChoBkdAaGtD8cdYGWgHTegDaAhHQH4Cj0lJHy51fZQoaAZHQGMCsYMvysloB03oA2gIR0B+Bct6HCXQdX2UKGgGR0BtfQKpkwvhaAdNSAFoCEdAfgaP2wmmcnV9lChoBkdAYOC67ulXR2gHTegDaAhHQH4HyFPBSDR1fZQoaAZHwDUjiiqQzUJoB0tdaAhHQH4J+yzHCGh1fZQoaAZHwCcRkI5YHPhoB0tpaAhHQH4LNOdoWYZ1fZQoaAZHQGXb0Ouq3mVoB03oA2gIR0B+EjLZBcAzdX2UKGgGR0BiqyElE7W/aAdN6ANoCEdAfhKQzk6tDHV9lChoBkdAZaMQPqcEvGgHTegDaAhHQH4Uwb2lEZ11fZQoaAZHQGHotEG7jDNoB03oA2gIR0B+FZqmCROldX2UKGgGRz/xREBsANobaAdLWWgIR0B+Fg9gWrOrdX2UKGgGR0Bg2ChzvJA/aAdN6ANoCEdAfhdOrQw9JXV9lChoBkdAbpCWAwwj+2gHTS4CaAhHQH4cLsWweNl1fZQoaAZHQGJllotcv/RoB03oA2gIR0B+HOO2iL2pdX2UKGgGR8BfIT7ALy+YaAdNBQFoCEdAfh4Xj2i+L3V9lChoBkdAYJpUKArhBWgHTegDaAhHQH4e/NFBppN1fZQoaAZHQGE1Xcxj8UFoB03oA2gIR0B+I8QL/jsEdX2UKGgGR0Biv+i+L3sYaAdN6ANoCEdAfiU5imVJMHV9lChoBkdASTUewLVnVWgHTegDaAhHQH5yerZJ04l1fZQoaAZHQBumn4wh4dJoB0tpaAhHQH5zGfK6nR91fZQoaAZHQGKjvCl7+kxoB03oA2gIR0B+cxbHIZIhdX2UKGgGR0BkTdn9NvfkaAdN6ANoCEdAfnplANXo1XV9lChoBkdAZYN8hLXcxmgHTegDaAhHQH5+ZMlC1JF1fZQoaAZHQC6XyEtdzGRoB0t+aAhHQH5//JRwZO11fZQoaAZHQGEAYqoZQ55oB03oA2gIR0B+gHvSc9W7dX2UKGgGR0BmATX6InBtaAdN6ANoCEdAfoG/+KjzqnV9lChoBkdAIefustCiRGgHS4VoCEdAfoYiz9jwx3V9lChoBkdAY8yqbz9S/GgHTegDaAhHQH6LYs3AEdN1fZQoaAZHQGOwe6iCaqloB03oA2gIR0B+jEH6dlNDdX2UKGgGR0BkGvLJSzgNaAdN6ANoCEdAfoy2wFC9iHV9lChoBkdAUK+wu/UONGgHTegDaAhHQH6OHk5p8F91fZQoaAZHQGFu8Gkep4toB03oA2gIR0B+kuJxeb/fdX2UKGgGR0BiestsenyeaAdN6ANoCEdAfpOpSaVlgHV9lChoBkdAZG9WS2Yv4GgHTegDaAhHQH6VCCJ40Mx1fZQoaAZHQGSMNW2gFotoB03oA2gIR0B+le8XenAJdX2UKGgGR0BjcXZTQ3PzaAdN6ANoCEdAfpwIo3JgcHVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
ppo-LunarLander-v2_2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2bed20996e5b1d8b3a0dd55bbedfdbdea965ecc296d7a7dd41eba1ba710cfb5
|
3 |
size 88362
|
ppo-LunarLander-v2_2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7adf6b22a7e643443a4285c9103b0ae0d5c86c7bd2f061cc8937c676fd366559
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 276.98570379999995, "std_reward": 15.652897671506613, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-21T10:57:08.690077"}
|