MalumaDev commited on
Commit
2e0fbb8
·
verified ·
1 Parent(s): 4804bae

New attempt

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 259.28 +/- 21.08
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -12.48 +/- 80.01
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b3c7af124d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b3c7af12560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b3c7af125f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b3c7af12680>", "_build": "<function ActorCriticPolicy._build at 0x7b3c7af12710>", "forward": "<function ActorCriticPolicy.forward at 0x7b3c7af127a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b3c7af12830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b3c7af128c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b3c7af12950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b3c7af129e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b3c7af12a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b3c7af12b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b3c7af18480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713688775932446783, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1HzD0pAGi69x6mt94TarFXguu5CGPANgAAAAAAAIA/AE4HvY/qNLqy0Lmzh0HnLvMWbrvt978zAACAPwAAgD8ATwW+LSt9Pn2W6z2X/ZO+r0qWPCeZwzwAAAAAAAAAAE17dj61u5M/vT3TPd/qkb4Skws+DyDJvQAAAAAAAAAAmmmHuq6Z4Loassm7n4Z+PPEp4Ttb8l29AACAPwAAgD/zTrU9KUBJurVQn7qJAkY06Vp0OqaauDkAAIA/AAAAAGaVrzwufrQ/0kM2P8pnHb3c/Zq8eGS3vQAAAAAAAAAAGl5jPVPBhz59fYg8VqqHvnPijztw49s7AAAAAAAAAAAacE09mlh1PqoXRr1KnUK+czX0vLqW7bsAAAAAAAAAALNQZD5Ph6U/gAq1PkEsk742xJw+Tn4EPgAAAAAAAAAAmr8QPPSphz3SOUW+kbg/vhzVlL3QEKa8AAAAAAAAAADND9E9e0qDutfQJLhvNhqzp70JunxcQDcAAAAAAACAP7NfDz5GFOg+PZHHvl6se75f99a9igexvQAAAAAAAAAAMwJDPVzrWbr8cx44VruCM6o/SDvOSzi3AACAPwAAgD8GfVU+tMQhP59rJr6hvXK+t16BPThVtDwAAAAAAAAAAADtgbwk7KY+BPE7PkK7cL5fkOo9ilamOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJAJyuIRAeMAWyUTXoBjAF0lEdAkSK3rY5DJHV9lChoBkdAZQlQ53kgfWgHTegDaAhHQJEjCDdxhlV1fZQoaAZHQGIcDZlFtsNoB03oA2gIR0CRJFr8BMi9dX2UKGgGR0BsCO/etSydaAdNRwJoCEdAkSSn7P6bfHV9lChoBkdAcNR5HVf/m2gHTdkBaAhHQJEluFoL5RF1fZQoaAZHQHHJkM5OrQxoB00bA2gIR0CRJt4Ia99MdX2UKGgGR0BiGAh+vyLAaAdN6ANoCEdAkScUUj9n9XV9lChoBkdAcca+xnnMdWgHTR4DaAhHQJEnwVclgMN1fZQoaAZHQG0ZtN8E3bVoB03sAmgIR0CRLJqrR0EHdX2UKGgGR0Bt441+AmReaAdNLgFoCEdAkS0WbkOqenV9lChoBkdAcV+TDO1OTWgHTXoBaAhHQJEtRV6u4gB1fZQoaAZHQG5pd8Aq/dtoB03gAWgIR0CRLe4tpVS5dX2UKGgGR0Bwc+P1ct5EaAdNggFoCEdAkS4dXT3IuHV9lChoBkdARw9rVOKwZGgHS/9oCEdAkS7Z44ZMtnV9lChoBkdAcBFS9ugpSmgHTWABaAhHQJEu6c/dIoV1fZQoaAZHQFBPiHIp6QhoB0vqaAhHQJEvDI1cdHV1fZQoaAZHQG6gEfDDTBtoB01tAWgIR0CRMP6cy31BdX2UKGgGR0Bywc4Ia99MaAdNiAFoCEdAkTcEKArhBXV9lChoBkdAYj5abF0gbWgHTegDaAhHQJE6IW3z+WJ1fZQoaAZHQHDeG1UlzEJoB02SAWgIR0CRRJ0Zm7J5dX2UKGgGR0Bs6jj94u9OaAdNyQJoCEdAkUUBjFyaNXV9lChoBkdAckdfW+XZ5GgHTdgBaAhHQJFGSTUy57R1fZQoaAZHQHB7WmxdIG1oB00nAmgIR0CRSmNGmUGFdX2UKGgGR0BuwAhMajveaAdNJwNoCEdAkUtIYixFAnV9lChoBkdAb7IaTfR/mWgHTTUDaAhHQJFNpQ/HHWB1fZQoaAZHQHGD1a0QbuNoB01fAmgIR0CRTtF3IMjNdX2UKGgGR0BxrwKRdQfqaAdNjQJoCEdAkVKZ40Mw13V9lChoBkdAcgsmITGo72gHTfkBaAhHQJFU4aP0Zm91fZQoaAZHQHF8BJd0JWxoB01AAWgIR0CRZmCKaXrudX2UKGgGR0Bw3M3yZrpJaAdNgwNoCEdAkWa5+2E0znV9lChoBkdAcmT0cfeUIWgHTU4BaAhHQJFnTnhbW3B1fZQoaAZHQG6MgJswco9oB03HA2gIR0CRaJKr7wazdX2UKGgGR0BuVVlVcUudaAdNMwNoCEdAkWjnIlt0m3V9lChoBkdAbG1qX4TK1WgHTdcCaAhHQJFpbIHTqjd1fZQoaAZHQHBI9Kyv9tNoB01HA2gIR0CRamb/ffoBdX2UKGgGR0Bwpw+mm+CcaAdNpwFoCEdAkWvLyc0+DHV9lChoBkdAcbzImgJ1JWgHTW8DaAhHQJFtO2VmjCZ1fZQoaAZHQG8Dc2Jiy6doB01yAWgIR0CRcTZk078vdX2UKGgGR0Buvmff4yoGaAdNHgJoCEdAkXcna37UG3V9lChoBkdAcG0whnrY5GgHTfYBaAhHQJF3aaCtihF1fZQoaAZHQHAjA2qDK5loB01PAWgIR0CRemYfnwG4dX2UKGgGR0BxpjA/LTx5aAdNcgFoCEdAkXv89B8hLXV9lChoBkdAcIxr3Cbc5GgHTU4BaAhHQJF8nMcIZ651fZQoaAZHQG+ZqFh5PdloB021AWgIR0CRfgurIYFadX2UKGgGR0ByVZn+Q2deaAdNpQNoCEdAkX7W5paibnV9lChoBkdAb/jguyu6mWgHTWABaAhHQJF/UEV32VV1fZQoaAZHQHIQZTER8MNoB01jAWgIR0CRgL5xBE8adX2UKGgGR0BwSVOk+HJtaAdNBAJoCEdAkYEqvNeMQ3V9lChoBkdARO0Od5IH1WgHS+doCEdAkYLsLncL0HV9lChoBkdAbsIMOwxFiWgHTfEBaAhHQJGDAZvUBn11fZQoaAZHQG3AhzNliBpoB01MAmgIR0CRg9fI0ZWJdX2UKGgGR0BvUgRsdkrgaAdNhQJoCEdAkYWWRRuTA3V9lChoBkdAbp1bZezD42gHTfwBaAhHQJGKPkjopx51fZQoaAZHQGVLa1stTUBoB03oA2gIR0CRjCAaef7KdX2UKGgGR0BvPgoJAt4BaAdNTgFoCEdAkY2g6ltTDXV9lChoBkdAcXSSwGGEf2gHTd8BaAhHQJGONCHARCh1fZQoaAZHQG7McRUWEbpoB013A2gIR0CRjoaisXBQdX2UKGgGR0Bwvo+iaiK0aAdNSgFoCEdAkY9u45Lh73V9lChoBkdAUoRULlV94WgHTRQBaAhHQJGQYz9CNS91fZQoaAZHQG8tgOz6ab5oB01kAWgIR0CRky1zQu27dX2UKGgGR0Bt6sX7+DODaAdN7wFoCEdAkaqxu4wyqXV9lChoBkdAauffiPyTZGgHTTsCaAhHQJGrNM6BAfN1fZQoaAZHQHGRp+2E0zloB00jAmgIR0CRqz/2kBS2dX2UKGgGR0BvfhaRp1zRaAdNiAJoCEdAkavFY2bXpXV9lChoBkdAb5Vjurp7kWgHTaMBaAhHQJGsKngpBop1fZQoaAZHQG2c2criEQJoB02BAmgIR0CRrSEq2BrfdX2UKGgGR0BxHI5FPSDzaAdNUwFoCEdAka1XKSxJNHV9lChoBkdAb0eGkep4r2gHTQUCaAhHQJGti68QI2R1fZQoaAZHQHEQBFqi48VoB01zAWgIR0CRsVVeruIAdX2UKGgGR0BwpO4rjHXFaAdNagFoCEdAkbFwK0D2anV9lChoBkdAauh+mWMS9WgHTbQBaAhHQJGyw0O3DvV1fZQoaAZHQHBFk+PikwhoB00yA2gIR0CRs8h3JPqLdX2UKGgGR0BsWplcyFfzaAdNogFoCEdAkbWf8yeqaXV9lChoBkdAaic+SKWLP2gHTXABaAhHQJG1/H/95yF1fZQoaAZHQHEchsANoaloB03CAWgIR0CRthXtBv74dX2UKGgGR0Bu0w+UyHmBaAdNLgFoCEdAkbk3J5mh/XV9lChoBkdAcWOHqu8sc2gHTVwBaAhHQJG5XO7g88t1fZQoaAZHQHHs2ZiNKiBoB01oAWgIR0CRuk5EMLF5dX2UKGgGR0Bs5A00m+j/aAdNfwFoCEdAkbrAXMyJsXV9lChoBkdAcRbbutwJgWgHTZEBaAhHQJG7Dj4pMHt1fZQoaAZHQHDGYiTt9hJoB02UAWgIR0CRvETER8MNdX2UKGgGR0BvLLqnm7rcaAdNigJoCEdAkb0ShrWRR3V9lChoBkdAcVmXFtKqXGgHTbUBaAhHQJG+hXNke6t1fZQoaAZHQHMGo2Kl54ZoB01kAWgIR0CRv1ADaGpNdX2UKGgGR0ByIiX6ZYxMaAdN0QFoCEdAkb+5vcafjHV9lChoBkdAckqYBNmDlGgHTYIBaAhHQJHCh2NedCp1fZQoaAZHQHBjrgCOmzloB01pAWgIR0CRw7httQ9BdX2UKGgGR0Bvpf4qPOpsaAdN3wFoCEdAkcPlDa4+bHV9lChoBkdAcrspRXOnmGgHTXgBaAhHQJHEYQVbiZR1fZQoaAZHQG8x8iOearpoB01NAWgIR0CRx+ZnctXgdX2UKGgGR0ByIq8WbgCPaAdNUQFoCEdAkcnJUPxx1nV9lChoBkdAb2758BuGbmgHTfwBaAhHQJHJyhpQDV91fZQoaAZHQHABKKP4mC1oB02ZAWgIR0CRyqRw6ySndX2UKGgGR0BuCTru6VdHaAdNxAFoCEdAkcuQlruYyHV9lChoBkdAcUnFefI0ZWgHTYICaAhHQJHNVtFa0Qd1fZQoaAZHQG8XtlqagEloB03rAWgIR0CRzhTnq3VkdX2UKGgGR0Bxsx4keIVNaAdNcQFoCEdAkc/0ETxoZnV9lChoBkdAcWZ0gKWszWgHTVEBaAhHQJHTPIV/MGJ1fZQoaAZHQHHCjDn/1g9oB01HAmgIR0CR1LUmlZX/dX2UKGgGR0BwRv+R5kbxaAdNfQFoCEdAkdZtN8E3bXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b3c7af124d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b3c7af12560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b3c7af125f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b3c7af12680>", "_build": "<function ActorCriticPolicy._build at 0x7b3c7af12710>", "forward": "<function ActorCriticPolicy.forward at 0x7b3c7af127a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b3c7af12830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b3c7af128c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b3c7af12950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b3c7af129e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b3c7af12a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b3c7af12b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b3c7af18480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713694274245904148, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJMalT7EEpU//newvS+/tr2S5Cy8crmuuwAAAAAAAAAAGmy7PWiUoT/uUTU92RXLvUA/Wzz9LrO8AAAAAAAAAAAae729C/OkP0bgKb9XXYS+RU3PPUGSwz0AAAAAAAAAAE1ThD0fLeu5rziIOrd4JTYIbtY5oyyeuQAAgD8AAIA/AGuZPJeBVz6tzI+8f476vV6IBT0FQnI9AAAAAAAAAAAzCFo+yJiuO1KDrzun/jk5g2BNPdIHEjoAAIA/AACAP7jh7b4RL5k/U+8gPYworjzdNIK8Pp43vQAAAAAAAAAAOj8FPnEYHLtArFG60zsMNx2EWrwi2Xs5AACAPwAAgD+Nz5E9FPNnPoA2Mz3GdQK+tZ0xPPCqfD0AAAAAAAAAAHPqiD3Errg+GRCDOzH8Cb0JabS8bYEavQAAAAAAAAAAel5Nvj9bcD/Cpm882FMEvcvCvbylInE9AAAAAAAAAAATxyK+Fr2LP0tbXL0n3e69TzAtvauoj70AAAAAAAAAAPbPU76vYZA/gOt7vCc6mr3D5Fu8XGnGOwAAAAAAAAAAJtL1vRJrlj+K6bA8kyeGvX2/LryjIC09AAAAAAAAAAANIc09J8w9PtKmx7wk+X69qqbIumm4ljwAAAAAAAAAAKb8sb3XXCW74iKqPFGzAj25VQe8Q1bcPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI8OutQsPJ+MAWyUTdMDjAF0lEdAe7FobXHzYnV9lChoBkdAiX7mzjWCmWgHTegDaAhHQHu0qS5iExt1fZQoaAZHQIMhFpZfUnZoB03oA2gIR0B7tjYg7o0RdX2UKGgGR0CItLrGipNsaAdN6ANoCEdAe7lf/3nIQ3V9lChoBkdAjgLqGUOd5WgHTegDaAhHQHu6LOE/Spl1fZQoaAZHQJGZxjawljVoB03oA2gIR0B7vAeii7CjdX2UKGgGR0CQjs+CsfaIaAdN6ANoCEdAe8C06YE4enV9lChoBkdAjIU78Nx2jmgHTUwDaAhHQHvCanm7rcF1fZQoaAZHQIWq5WJaaCtoB03oA2gIR0B7yLi4rjHXdX2UKGgGR0CLpUwmmce9aAdN6ANoCEdAe8kvRZ2ZA3V9lChoBkdAfYN5BC2MKmgHTegDaAhHQHvKU7CBPKx1fZQoaAZHQH63Xggow25oB03oA2gIR0B7zOhPCVKPdX2UKGgGR0CQAms1baAXaAdN6ANoCEdAe84wmVqveXV9lChoBkdAjE6O45Lh72gHTegDaAhHQHvQnkLhJiB1fZQoaAZHQHdZWS+xnnNoB03oA2gIR0B70zWy1NQCdX2UKGgGR0CLnTf3vhIfaAdN6ANoCEdAfCCOuaF23nV9lChoBkdAiHTD4QBgeGgHTegDaAhHQHwiLOmixml1fZQoaAZHQH21sP4EfT1oB030AmgIR0B8I4Ovt+kQdX2UKGgGR0CBilGT9sJqaAdN6ANoCEdAfCXWyTpxFXV9lChoBkdAfAItGus90WgHTZYCaAhHQHwmUwvg3tN1fZQoaAZHQI4gVrAP/aRoB03oA2gIR0B8J3CvX9R8dX2UKGgGR0B6fUdELH+7aAdNLgJoCEdAfCiePaL4vnV9lChoBkdAgjZykTHsC2gHTegDaAhHQHwqqx1PnCB1fZQoaAZHQIroZ17pmmNoB03oA2gIR0B8K3nbItDldX2UKGgGR0CDtEBBAv+PaAdN6ANoCEdAfDIb3XZoPHV9lChoBkdAhgosQd0aImgHTegDaAhHQHw6noPkJa91fZQoaAZHQITZ9B+nZTRoB03oA2gIR0B8PC9vjwQUdX2UKGgGR0CO+14agmJFaAdN6ANoCEdAfD/sT37DVHV9lChoBkdAjS4dQGfPHGgHTegDaAhHQHxBy9du5z51fZQoaAZHQIpAswJw84hoB03oA2gIR0B8RURtgrpadX2UKGgGR0CJi+NgBtDVaAdN6ANoCEdAfEie1KGtZHV9lChoBkdAhSk0tRNypGgHTegDaAhHQHybk3XI2fl1fZQoaAZHQIuqSMJhOQBoB03oA2gIR0B8nQLE1l5GdX2UKGgGR0CIn1MN+b3HaAdN6ANoCEdAfJ44k/r0KHV9lChoBkdAiND6ews5GWgHTegDaAhHQHygdIoVmBh1fZQoaAZHQIRqLpiZv1loB03oA2gIR0B8oPB7/n4gdX2UKGgGR0CQPVPDHfdiaAdN6ANoCEdAfKIeD3/PxHV9lChoBkdAi4eJtBOYY2gHTegDaAhHQHyjPn0TURZ1fZQoaAZHQI3p7Ub1h9doB03oA2gIR0B8pUGlhw2mdX2UKGgGR0BuvNtXPqs2aAdN6ANoCEdAfKYPvKEFn3V9lChoBkdAiOAt83Mpw2gHTQoDaAhHQHysX9WIXTF1fZQoaAZHQIia2t4iX6ZoB03oA2gIR0B8rNiCrcTKdX2UKGgGR0CKA9VwPy08aAdN9QJoCEdAfK9MvAXVLHV9lChoBkdAiO8SCvovBmgHTegDaAhHQHy2P47A+IN1fZQoaAZHQIu9C1G9YfZoB03oA2gIR0B8ulENOM2ndX2UKGgGR0CG5HbFjurqaAdN+wJoCEdAfLzDv3JxN3V9lChoBkdAiXwA/C66KGgHTegDaAhHQHy8v4mCyyF1fZQoaAZHQIJP3NJOFg5oB026AmgIR0B8vM9eQdS3dX2UKGgGR0CRFCyHVPN3aAdN6ANoCEdAfL8isGPgenV9lChoBkdAlLD2g8KXwGgHTegDaAhHQH0TAqZtvXN1fZQoaAZHQIRcBof0VahoB03oA2gIR0B9FVmnO0LMdX2UKGgGR0CIQF2OhkAhaAdN6ANoCEdAfRoornTy8XV9lChoBkdAi7ebzCk43mgHTaQDaAhHQH0aJZGKAJ91fZQoaAZHQIIxR0KZ2IRoB03oA2gIR0B9G9ffGdZrdX2UKGgGR0CJ2LSro4dZaAdN6ANoCEdAfR8hhH9WIXV9lChoBkdAju8GP5pJw2gHTegDaAhHQH0f82rGR3h1fZQoaAZHQIAB6mj0tiBoB03oA2gIR0B9JiU6gdwOdX2UKGgGR0COlzzMA3kxaAdN6ANoCEdAfSaazNUwSXV9lChoBkdAh6IdN34bj2gHTegDaAhHQH0pBW1c+q11fZQoaAZHQJCOz1qWTotoB03oA2gIR0B9MFRm9QGfdX2UKGgGR0CI3HB9Cu2aaAdN6ANoCEdAfTR7FsHjZXV9lChoBkdAh4/Yu9OARWgHTegDaAhHQH03Ieo1k2B1fZQoaAZHQIisxKjBVMpoB03oA2gIR0B9NyAYpDu0dX2UKGgGR0CDye+0PYnOaAdN6ANoCEdAfTcsT37DVHV9lChoBkdAfzcNcnmaIGgHTegDaAhHQH05jGo73f11fZQoaAZHQIhEEXvYvnNoB03oA2gIR0B9iGFvhqCZdX2UKGgGR0CAvNEXtShraAdN6ANoCEdAfYnS8an753V9lChoBkdAhsy57ojfN2gHTegDaAhHQH2NNxQzk6t1fZQoaAZHQIgZzHdXT3JoB03oA2gIR0B9jTQkX1rZdX2UKGgGR0CQTWtfXwsoaAdN6ANoCEdAfY75jYqXnnV9lChoBkdAgXv2jwhGIGgHTegDaAhHQH2SS/0ulGh1fZQoaAZHQJFZ0kQf6oFoB03oA2gIR0B9kyR4hUzbdX2UKGgGR0CEoAsEJSiuaAdN6ANoCEdAfZl7w8W9DnV9lChoBkdAjgZIBq9GqmgHTegDaAhHQH2aBh+fAbh1fZQoaAZHQIk7P+GXXy1oB03oA2gIR0B9nH3cpLEldX2UKGgGR0CLUGJEYwZgaAdN6ANoCEdAfaPqGDcuanV9lChoBkdAhaar3bmEG2gHTegDaAhHQH2n+A7Pppx1fZQoaAZHQI3f8LSeAd5oB03oA2gIR0B9qo9Pk7wKdX2UKGgGR0CKTaIrOJLvaAdN6ANoCEdAfaqOG0u14XV9lChoBkdAk+0DKgZjx2gHTegDaAhHQH2qnBtUGV11fZQoaAZHQIFAI8W9DhNoB03oA2gIR0B9rSGWUr08dX2UKGgGR0CLRpMJQcghaAdN6ANoCEdAfgY5bhWHUXV9lChoBkdAetJ/bj94vGgHTegDaAhHQH4H+8f3evZ1fZQoaAZHQJECimbb1yxoB03oA2gIR0B+C3LLZBcBdX2UKGgGR0CC7cpcX3xnaAdN6ANoCEdAfgtvoNd7fHV9lChoBkdAhsU7hNucc2gHTegDaAhHQH4NB9XtBv91fZQoaAZHQIUENlI3BHloB03oA2gIR0B+EFK15Sm7dX2UKGgGR0CDpWFyq+8HaAdN6ANoCEdAfhErcTJyQ3V9lChoBkdAeMFQnx8UmGgHTe4BaAhHQH4T6ziS7oV1fZQoaAZHQIYeTasZHd5oB03oA2gIR0B+F+cWj45+dX2UKGgGR0CNPtDdgv12aAdN6ANoCEdAfhhuSwGGEnV9lChoBkdAjhc0YKpkw2gHTegDaAhHQH4bF2icoYx1fZQoaAZHQHB4+/5+H8FoB00cAmgIR0B+IiHGjsUqdX2UKGgGR0CEA87HQyAQaAdN6ANoCEdAfiK84xUNrnV9lChoBkdAhUwW7e2uxWgHTXoCaAhHQH4mic0+C9R1fZQoaAZHQJAzT9ETg2toB03oA2gIR0B+Jx0EHMUzdX2UKGgGR0CCkBEcbR4RaAdN6ANoCEdAfim+eOGTLXV9lChoBkdAgYEE7W/ag2gHTegDaAhHQH4pvU4JeE91fZQoaAZHQHXof82rGR5oB03oA2gIR0B+LFBZ6lchdX2UKGgGR0CQ0V9FnZkDaAdN6ANoCEdAfjD5I6KceHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2_2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:094544034e8e3ca4b68cfb2382b9d7b75a33f354e883d63c21c8a14275f90b3d
3
+ size 148088
ppo-LunarLander-v2_2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2_2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b3c7af124d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b3c7af12560>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b3c7af125f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b3c7af12680>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b3c7af12710>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b3c7af127a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b3c7af12830>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b3c7af128c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b3c7af12950>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b3c7af129e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b3c7af12a70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b3c7af12b00>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b3c7af18480>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1713694274245904148,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJMalT7EEpU//newvS+/tr2S5Cy8crmuuwAAAAAAAAAAGmy7PWiUoT/uUTU92RXLvUA/Wzz9LrO8AAAAAAAAAAAae729C/OkP0bgKb9XXYS+RU3PPUGSwz0AAAAAAAAAAE1ThD0fLeu5rziIOrd4JTYIbtY5oyyeuQAAgD8AAIA/AGuZPJeBVz6tzI+8f476vV6IBT0FQnI9AAAAAAAAAAAzCFo+yJiuO1KDrzun/jk5g2BNPdIHEjoAAIA/AACAP7jh7b4RL5k/U+8gPYworjzdNIK8Pp43vQAAAAAAAAAAOj8FPnEYHLtArFG60zsMNx2EWrwi2Xs5AACAPwAAgD+Nz5E9FPNnPoA2Mz3GdQK+tZ0xPPCqfD0AAAAAAAAAAHPqiD3Errg+GRCDOzH8Cb0JabS8bYEavQAAAAAAAAAAel5Nvj9bcD/Cpm882FMEvcvCvbylInE9AAAAAAAAAAATxyK+Fr2LP0tbXL0n3e69TzAtvauoj70AAAAAAAAAAPbPU76vYZA/gOt7vCc6mr3D5Fu8XGnGOwAAAAAAAAAAJtL1vRJrlj+K6bA8kyeGvX2/LryjIC09AAAAAAAAAAANIc09J8w9PtKmx7wk+X69qqbIumm4ljwAAAAAAAAAAKb8sb3XXCW74iKqPFGzAj25VQe8Q1bcPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI8OutQsPJ+MAWyUTdMDjAF0lEdAe7FobXHzYnV9lChoBkdAiX7mzjWCmWgHTegDaAhHQHu0qS5iExt1fZQoaAZHQIMhFpZfUnZoB03oA2gIR0B7tjYg7o0RdX2UKGgGR0CItLrGipNsaAdN6ANoCEdAe7lf/3nIQ3V9lChoBkdAjgLqGUOd5WgHTegDaAhHQHu6LOE/Spl1fZQoaAZHQJGZxjawljVoB03oA2gIR0B7vAeii7CjdX2UKGgGR0CQjs+CsfaIaAdN6ANoCEdAe8C06YE4enV9lChoBkdAjIU78Nx2jmgHTUwDaAhHQHvCanm7rcF1fZQoaAZHQIWq5WJaaCtoB03oA2gIR0B7yLi4rjHXdX2UKGgGR0CLpUwmmce9aAdN6ANoCEdAe8kvRZ2ZA3V9lChoBkdAfYN5BC2MKmgHTegDaAhHQHvKU7CBPKx1fZQoaAZHQH63Xggow25oB03oA2gIR0B7zOhPCVKPdX2UKGgGR0CQAms1baAXaAdN6ANoCEdAe84wmVqveXV9lChoBkdAjE6O45Lh72gHTegDaAhHQHvQnkLhJiB1fZQoaAZHQHdZWS+xnnNoB03oA2gIR0B70zWy1NQCdX2UKGgGR0CLnTf3vhIfaAdN6ANoCEdAfCCOuaF23nV9lChoBkdAiHTD4QBgeGgHTegDaAhHQHwiLOmixml1fZQoaAZHQH21sP4EfT1oB030AmgIR0B8I4Ovt+kQdX2UKGgGR0CBilGT9sJqaAdN6ANoCEdAfCXWyTpxFXV9lChoBkdAfAItGus90WgHTZYCaAhHQHwmUwvg3tN1fZQoaAZHQI4gVrAP/aRoB03oA2gIR0B8J3CvX9R8dX2UKGgGR0B6fUdELH+7aAdNLgJoCEdAfCiePaL4vnV9lChoBkdAgjZykTHsC2gHTegDaAhHQHwqqx1PnCB1fZQoaAZHQIroZ17pmmNoB03oA2gIR0B8K3nbItDldX2UKGgGR0CDtEBBAv+PaAdN6ANoCEdAfDIb3XZoPHV9lChoBkdAhgosQd0aImgHTegDaAhHQHw6noPkJa91fZQoaAZHQITZ9B+nZTRoB03oA2gIR0B8PC9vjwQUdX2UKGgGR0CO+14agmJFaAdN6ANoCEdAfD/sT37DVHV9lChoBkdAjS4dQGfPHGgHTegDaAhHQHxBy9du5z51fZQoaAZHQIpAswJw84hoB03oA2gIR0B8RURtgrpadX2UKGgGR0CJi+NgBtDVaAdN6ANoCEdAfEie1KGtZHV9lChoBkdAhSk0tRNypGgHTegDaAhHQHybk3XI2fl1fZQoaAZHQIuqSMJhOQBoB03oA2gIR0B8nQLE1l5GdX2UKGgGR0CIn1MN+b3HaAdN6ANoCEdAfJ44k/r0KHV9lChoBkdAiND6ews5GWgHTegDaAhHQHygdIoVmBh1fZQoaAZHQIRqLpiZv1loB03oA2gIR0B8oPB7/n4gdX2UKGgGR0CQPVPDHfdiaAdN6ANoCEdAfKIeD3/PxHV9lChoBkdAi4eJtBOYY2gHTegDaAhHQHyjPn0TURZ1fZQoaAZHQI3p7Ub1h9doB03oA2gIR0B8pUGlhw2mdX2UKGgGR0BuvNtXPqs2aAdN6ANoCEdAfKYPvKEFn3V9lChoBkdAiOAt83Mpw2gHTQoDaAhHQHysX9WIXTF1fZQoaAZHQIia2t4iX6ZoB03oA2gIR0B8rNiCrcTKdX2UKGgGR0CKA9VwPy08aAdN9QJoCEdAfK9MvAXVLHV9lChoBkdAiO8SCvovBmgHTegDaAhHQHy2P47A+IN1fZQoaAZHQIu9C1G9YfZoB03oA2gIR0B8ulENOM2ndX2UKGgGR0CG5HbFjurqaAdN+wJoCEdAfLzDv3JxN3V9lChoBkdAiXwA/C66KGgHTegDaAhHQHy8v4mCyyF1fZQoaAZHQIJP3NJOFg5oB026AmgIR0B8vM9eQdS3dX2UKGgGR0CRFCyHVPN3aAdN6ANoCEdAfL8isGPgenV9lChoBkdAlLD2g8KXwGgHTegDaAhHQH0TAqZtvXN1fZQoaAZHQIRcBof0VahoB03oA2gIR0B9FVmnO0LMdX2UKGgGR0CIQF2OhkAhaAdN6ANoCEdAfRoornTy8XV9lChoBkdAi7ebzCk43mgHTaQDaAhHQH0aJZGKAJ91fZQoaAZHQIIxR0KZ2IRoB03oA2gIR0B9G9ffGdZrdX2UKGgGR0CJ2LSro4dZaAdN6ANoCEdAfR8hhH9WIXV9lChoBkdAju8GP5pJw2gHTegDaAhHQH0f82rGR3h1fZQoaAZHQIAB6mj0tiBoB03oA2gIR0B9JiU6gdwOdX2UKGgGR0COlzzMA3kxaAdN6ANoCEdAfSaazNUwSXV9lChoBkdAh6IdN34bj2gHTegDaAhHQH0pBW1c+q11fZQoaAZHQJCOz1qWTotoB03oA2gIR0B9MFRm9QGfdX2UKGgGR0CI3HB9Cu2aaAdN6ANoCEdAfTR7FsHjZXV9lChoBkdAh4/Yu9OARWgHTegDaAhHQH03Ieo1k2B1fZQoaAZHQIisxKjBVMpoB03oA2gIR0B9NyAYpDu0dX2UKGgGR0CDye+0PYnOaAdN6ANoCEdAfTcsT37DVHV9lChoBkdAfzcNcnmaIGgHTegDaAhHQH05jGo73f11fZQoaAZHQIhEEXvYvnNoB03oA2gIR0B9iGFvhqCZdX2UKGgGR0CAvNEXtShraAdN6ANoCEdAfYnS8an753V9lChoBkdAhsy57ojfN2gHTegDaAhHQH2NNxQzk6t1fZQoaAZHQIgZzHdXT3JoB03oA2gIR0B9jTQkX1rZdX2UKGgGR0CQTWtfXwsoaAdN6ANoCEdAfY75jYqXnnV9lChoBkdAgXv2jwhGIGgHTegDaAhHQH2SS/0ulGh1fZQoaAZHQJFZ0kQf6oFoB03oA2gIR0B9kyR4hUzbdX2UKGgGR0CEoAsEJSiuaAdN6ANoCEdAfZl7w8W9DnV9lChoBkdAjgZIBq9GqmgHTegDaAhHQH2aBh+fAbh1fZQoaAZHQIk7P+GXXy1oB03oA2gIR0B9nH3cpLEldX2UKGgGR0CLUGJEYwZgaAdN6ANoCEdAfaPqGDcuanV9lChoBkdAhaar3bmEG2gHTegDaAhHQH2n+A7Pppx1fZQoaAZHQI3f8LSeAd5oB03oA2gIR0B9qo9Pk7wKdX2UKGgGR0CKTaIrOJLvaAdN6ANoCEdAfaqOG0u14XV9lChoBkdAk+0DKgZjx2gHTegDaAhHQH2qnBtUGV11fZQoaAZHQIFAI8W9DhNoB03oA2gIR0B9rSGWUr08dX2UKGgGR0CLRpMJQcghaAdN6ANoCEdAfgY5bhWHUXV9lChoBkdAetJ/bj94vGgHTegDaAhHQH4H+8f3evZ1fZQoaAZHQJECimbb1yxoB03oA2gIR0B+C3LLZBcBdX2UKGgGR0CC7cpcX3xnaAdN6ANoCEdAfgtvoNd7fHV9lChoBkdAhsU7hNucc2gHTegDaAhHQH4NB9XtBv91fZQoaAZHQIUENlI3BHloB03oA2gIR0B+EFK15Sm7dX2UKGgGR0CDpWFyq+8HaAdN6ANoCEdAfhErcTJyQ3V9lChoBkdAeMFQnx8UmGgHTe4BaAhHQH4T6ziS7oV1fZQoaAZHQIYeTasZHd5oB03oA2gIR0B+F+cWj45+dX2UKGgGR0CNPtDdgv12aAdN6ANoCEdAfhhuSwGGEnV9lChoBkdAjhc0YKpkw2gHTegDaAhHQH4bF2icoYx1fZQoaAZHQHB4+/5+H8FoB00cAmgIR0B+IiHGjsUqdX2UKGgGR0CEA87HQyAQaAdN6ANoCEdAfiK84xUNrnV9lChoBkdAhUwW7e2uxWgHTXoCaAhHQH4mic0+C9R1fZQoaAZHQJAzT9ETg2toB03oA2gIR0B+Jx0EHMUzdX2UKGgGR0CCkBEcbR4RaAdN6ANoCEdAfim+eOGTLXV9lChoBkdAgYEE7W/ag2gHTegDaAhHQH4pvU4JeE91fZQoaAZHQHXof82rGR5oB03oA2gIR0B+LFBZ6lchdX2UKGgGR0CQ0V9FnZkDaAdN6ANoCEdAfjD5I6KceHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2_2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ceab189665bcfb7bcb9f055a1cc1608472c178d7aea4fcf582efdf7d94dfb138
3
+ size 88362
ppo-LunarLander-v2_2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd4742b0fb48add75448d0a5794303cf59883add03ba37ed16e0b66980e73adf
3
+ size 43762
ppo-LunarLander-v2_2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2_2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 259.28151149999997, "std_reward": 21.079135576037878, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-21T09:04:35.536901"}
 
1
+ {"mean_reward": -12.479782600000002, "std_reward": 80.01446309204178, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-21T10:24:59.282975"}