{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b3c7af124d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b3c7af12560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b3c7af125f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b3c7af12680>", "_build": "<function ActorCriticPolicy._build at 0x7b3c7af12710>", "forward": "<function ActorCriticPolicy.forward at 0x7b3c7af127a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b3c7af12830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b3c7af128c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b3c7af12950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b3c7af129e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b3c7af12a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b3c7af12b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b3c7af18480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713696479775946567, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZIvL0p6EC6rRcmOjv58Dempvg5pBpHuQAAgD8AAIA/mva+PXtehLo9lnA4LhWStmdR2zqoIoi3AACAPwAAgD+tHxE+0lKMu8Dbnrv72ek4vOC6vAccvjoAAIA/AACAPxqkAb49wAa7tHwTuzQvG7jLdWQ89Kg0OgAAgD8AAIA/zRlYPY8+Srp8XTI3ic2NsPaMG7p2z022AACAPwAAgD8Ac7M9KdgRuoOVkjvJSpU1hBunOp9iqroAAIA/AACAP6bKh71cpyu6l4mHvIuN27h0qfW6aiVHOAAAgD8AAIA/JsGFvYUj1rnSvoS7xKbctb13qbn2aJk6AACAPwAAgD+jsV++Bg2cP+39xL60LFO/nBM4vlu2iL4AAAAAAAAAAMCXtz2P0hC6SI6JuxGbCzUfgvG6lmegOgAAgD8AAAAA+koSPrh+njgwBoY7sRQkPE3MLTwzgAe9AACAPwAAgD/N7Ig8KbRKuk3J1jpnsVw2sAMSOz6F+LkAAIA/AACAP7OuQr0fDfy5XmlvvKtGbTac8ZI5gpzXtQAAgD8AAIA/AJ6iPHt6p7olQRU4iTQIM0t5mLqhUCu3AACAPwAAgD/mUgi+pExeu0J5PTuV9qM40EykPGufb7oAAIA/AAAAABbpqT5/Loe9s/msPCT4Fr1vELO+vlHWvQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGFBgUlAu7KMAWyUTegDjAF0lEdAfCYvfTCtR3V9lChoBkdAZFW94eLeh2gHTegDaAhHQHwnHKbKA8V1fZQoaAZHQEXXVurIYFdoB0tfaAhHQHwnh7u2JBR1fZQoaAZHQGXViaiKziVoB03oA2gIR0B8KGPYFqzrdX2UKGgGR0ArYWgOBlMAaAdLZmgIR0B8exhfBvaUdX2UKGgGR0Bd+9mxt52RaAdN6ANoCEdAfHw1Iy0rsnV9lChoBkdAWhTUqhDgImgHTegDaAhHQHx+O14Pf9B1fZQoaAZHQFdJqv/zasZoB03oA2gIR0B8ggpG4I8hdX2UKGgGR0BkPL7/GVAzaAdN6ANoCEdAfIaF/QSi/XV9lChoBkdAYds2dd3Sr2gHTegDaAhHQHyNyq2jO9p1fZQoaAZHQGodE9lmOENoB014AWgIR0B8j+goPTXrdX2UKGgGR0BhhNiQT238aAdN6ANoCEdAfJM8lolD4XV9lChoBkdAZ4/V4oqkM2gHTegDaAhHQHyajgQ6IWR1fZQoaAZHQGS8GuDBdldoB03oA2gIR0B8mrvnbItEdX2UKGgGR0BgS8q2BreqaAdN6ANoCEdAfJzm7aqS5nV9lChoBkdAYPxVd5Y5k2gHTegDaAhHQHydwpz90ih1fZQoaAZHQGFM+aa1Cw9oB03oA2gIR0B8n2+RHPNWdX2UKGgGR0BcKH2qT8pDaAdN6ANoCEdAfKHwWnCO3nV9lChoBkdAU8bC/GlyimgHTegDaAhHQHylrH6uW8h1fZQoaAZHQCwSsCDEm6ZoB0tnaAhHQHymcXSBshx1fZQoaAZHQGNL21lXiitoB03oA2gIR0B8pwnH/95ydX2UKGgGR0BlneZmZmZmaAdN6ANoCEdAfKfjjJdSl3V9lChoBkdAXr+ItUXHimgHTegDaAhHQHz5JVOsT391fZQoaAZHQDRPMr3Cbc5oB0tcaAhHQHz5Tho/Rmd1fZQoaAZHQGTglWXC0nhoB03oA2gIR0B8+pmZmZmadX2UKGgGR0BdCUhvBJqZaAdN6ANoCEdAfP0fWcz68HV9lChoBkdAYUR2aDwpfGgHTegDaAhHQHz/0sSTQmh1fZQoaAZHQGIQycLBsRBoB03oA2gIR0B9BrWEsasIdX2UKGgGR0BljPCqIacaaAdN6ANoCEdAfQimKqGUOnV9lChoBkdAZq+lXRw6yWgHTegDaAhHQH0L6T0QK8d1fZQoaAZHQEDCw9q1w5xoB0umaAhHQH0TLp/wy7B1fZQoaAZHQGXaBEBsANpoB03oA2gIR0B9E2ZE2HcldX2UKGgGR0Bhgj3Ehq0uaAdN6ANoCEdAfROUeuFHrnV9lChoBkdAYQuBJZntfGgHTegDaAhHQH0VyNS619h1fZQoaAZHQF9iksSTQmhoB03oA2gIR0B9FqE12q1gdX2UKGgGR0Bj8Uq2BreqaAdN6ANoCEdAfRhL7XQMQXV9lChoBkfAXkoVN5+pfmgHS+1oCEdAfR2UT+NtInV9lChoBkdAYlO6reZXuGgHTegDaAhHQH0eU+gUUPB1fZQoaAZHQGDF1+I/JNloB03oA2gIR0B9HxNM495hdX2UKGgGR0BiOfT9bX6JaAdN6ANoCEdAfR+vs7dSEXV9lChoBkdARRhpeu3c6GgHS3JoCEdAfSNj4593KXV9lChoBkdAY6dhGYrrgWgHTegDaAhHQH0kelwcYIl1fZQoaAZHQB04N7SiM5xoB03oA2gIR0B9JKBUaQ3hdX2UKGgGR0BouQz7/GVBaAdN6ANoCEdAfXpfNA1NxnV9lChoBkdAXjkbWEsasWgHTegDaAhHQH184ao/A0t1fZQoaAZHQGKw52hZha1oB03oA2gIR0B9f5BIFvAHdX2UKGgGR0BqnhXdTHbRaAdNhwFoCEdAfYRl+EytWHV9lChoBke/8hU3n6l+E2gHS3JoCEdAfYR3XI2fkHV9lChoBkdAZWvHmzSkTGgHTegDaAhHQH2GiQgcLjR1fZQoaAZHQGCAuVX3g1poB03oA2gIR0B9iH7JnxrjdX2UKGgGR0Bg5GxW1c+raAdN6ANoCEdAfZL6tT1kD3V9lChoBkdAXJB40Mw1zmgHTegDaAhHQH2TW+Cbtqp1fZQoaAZHQF1yp6QeV9poB03oA2gIR0B9lZLDhtLtdX2UKGgGR0BkibvRZ2ZBaAdN6ANoCEdAfZaNLlFMI3V9lChoBkdAYF1XjlxOtWgHTegDaAhHQH2YS/fwZwZ1fZQoaAZHQGUgT6i0v5BoB03oA2gIR0B9nb5vcafjdX2UKGgGR0BiwWd/axoqaAdN6ANoCEdAfZ/eHzpX63V9lChoBkdAYBAALApKBmgHTegDaAhHQH2ja99MK1J1fZQoaAZHQGFSc8cMmWtoB03oA2gIR0B9pItapxWDdX2UKGgGR0BkgwqNIbwSaAdN6ANoCEdAfaS6E8JUpHV9lChoBkdAYYdn9vS+g2gHTegDaAhHQH2l/1pTMq11fZQoaAZHQF26KT0QK8doB03oA2gIR0B99upFTefqdX2UKGgGR8BABXwCr92paAdLgmgIR0B995/WlMyrdX2UKGgGR0BhluH31zySaAdN6ANoCEdAfgJrlNlAeXV9lChoBkdAaGtD8cdYGWgHTegDaAhHQH4Cj0lJHy51fZQoaAZHQGMCsYMvysloB03oA2gIR0B+Bct6HCXQdX2UKGgGR0BtfQKpkwvhaAdNSAFoCEdAfgaP2wmmcnV9lChoBkdAYOC67ulXR2gHTegDaAhHQH4HyFPBSDR1fZQoaAZHwDUjiiqQzUJoB0tdaAhHQH4J+yzHCGh1fZQoaAZHwCcRkI5YHPhoB0tpaAhHQH4LNOdoWYZ1fZQoaAZHQGXb0Ouq3mVoB03oA2gIR0B+EjLZBcAzdX2UKGgGR0BiqyElE7W/aAdN6ANoCEdAfhKQzk6tDHV9lChoBkdAZaMQPqcEvGgHTegDaAhHQH4Uwb2lEZ11fZQoaAZHQGHotEG7jDNoB03oA2gIR0B+FZqmCROldX2UKGgGRz/xREBsANobaAdLWWgIR0B+Fg9gWrOrdX2UKGgGR0Bg2ChzvJA/aAdN6ANoCEdAfhdOrQw9JXV9lChoBkdAbpCWAwwj+2gHTS4CaAhHQH4cLsWweNl1fZQoaAZHQGJllotcv/RoB03oA2gIR0B+HOO2iL2pdX2UKGgGR8BfIT7ALy+YaAdNBQFoCEdAfh4Xj2i+L3V9lChoBkdAYJpUKArhBWgHTegDaAhHQH4e/NFBppN1fZQoaAZHQGE1Xcxj8UFoB03oA2gIR0B+I8QL/jsEdX2UKGgGR0Biv+i+L3sYaAdN6ANoCEdAfiU5imVJMHV9lChoBkdASTUewLVnVWgHTegDaAhHQH5yerZJ04l1fZQoaAZHQBumn4wh4dJoB0tpaAhHQH5zGfK6nR91fZQoaAZHQGKjvCl7+kxoB03oA2gIR0B+cxbHIZIhdX2UKGgGR0BkTdn9NvfkaAdN6ANoCEdAfnplANXo1XV9lChoBkdAZYN8hLXcxmgHTegDaAhHQH5+ZMlC1JF1fZQoaAZHQC6XyEtdzGRoB0t+aAhHQH5//JRwZO11fZQoaAZHQGEAYqoZQ55oB03oA2gIR0B+gHvSc9W7dX2UKGgGR0BmATX6InBtaAdN6ANoCEdAfoG/+KjzqnV9lChoBkdAIefustCiRGgHS4VoCEdAfoYiz9jwx3V9lChoBkdAY8yqbz9S/GgHTegDaAhHQH6LYs3AEdN1fZQoaAZHQGOwe6iCaqloB03oA2gIR0B+jEH6dlNDdX2UKGgGR0BkGvLJSzgNaAdN6ANoCEdAfoy2wFC9iHV9lChoBkdAUK+wu/UONGgHTegDaAhHQH6OHk5p8F91fZQoaAZHQGFu8Gkep4toB03oA2gIR0B+kuJxeb/fdX2UKGgGR0BiestsenyeaAdN6ANoCEdAfpOpSaVlgHV9lChoBkdAZG9WS2Yv4GgHTegDaAhHQH6VCCJ40Mx1fZQoaAZHQGSMNW2gFotoB03oA2gIR0B+le8XenAJdX2UKGgGR0BjcXZTQ3PzaAdN6ANoCEdAfpwIo3JgcHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |