flan-python-expert πŸš€

This model is a fine-tuned version of google/flan-t5-base on the codeagent-python dataset.

It is designed to generate Python code from natural language instructions.


🧠 Model Details

  • Base Model: FLAN-T5 Base
  • Fine-tuned on: Python code dataset (codeagent-python)
  • Task: Text-to-code generation
  • Language: English
  • Framework: πŸ€— Transformers
  • Library: adapter-transformers

πŸ‹οΈ Training

The model was trained using the following setup:

from transformers import TrainingArguments

training_args = TrainingArguments(
    output_dir="flan-python-expert",
    evaluation_strategy="epoch",
    learning_rate=2e-6,
    per_device_train_batch_size=1,
    per_device_eval_batch_size=1,
    num_train_epochs=1,
    weight_decay=0.01,
    save_total_limit=2,
    logging_steps=1,
    push_to_hub=False,
)

Trained for 1 epoch

Optimized for low-resource fine-tuning

Training performed using Hugging Face Trainer

Example Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

model = AutoModelForSeq2SeqLM.from_pretrained("MalikIbrar/flan-python-expert")
tokenizer = AutoTokenizer.from_pretrained("MalikIbrar/flan-python-expert")

input_text = "Write a Python function to check if a number is prime."
inputs = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(**inputs, max_length=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Downloads last month
26
Safetensors
Model size
248M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for MalikIbrar/flan-python-expert

Finetuned
(697)
this model

Dataset used to train MalikIbrar/flan-python-expert