Edit model card

You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

tiny Llama trained on BRO dataset with NER tags, Labels and Tokens.

WCETrainer r100_O10_f100 , run lemon-fog-11 checkpoint-1623.

  • EVAL

AVGf1 = 93%, overall_f1 = 82%

  • TEST

'DIAG': {'precision': 0.710079275198188, 'recall': 0.7674418604651163, 'f1': 0.7376470588235293, 'number': 817},

'MED': {'precision': 0.9379084967320261, 'recall': 0.959866220735786, 'f1': 0.9487603305785124, 'number': 299},

'TREAT': {'precision': 0.8542914171656687, 'recall': 0.856, 'f1': 0.8551448551448552, 'number': 500},

'overall_precision': 0.7672955974842768, 'overall_recall': 0.8304455445544554, 'overall_f1': 0.7976225854383358, 'overall_accuracy': 0.9280119624038735}

average_f1 = 0.8471840815156323

  • Prompt Format (see example):

### Context\n{Nachricht}\n\n### Answer

def context_text(text): return f"### Context\n{text}\n\n### Answer"

Downloads last month
0
Safetensors
Model size
1.1B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including MSey/tiny_BROLLLT_0001.1