MISHANM's picture
Update README.md
c589f5b verified
---
base_model:
- deepseek-ai/Janus-Pro-7B
---
# MISHANM/deepseek-ai_janus-Pro-7B-fp16
The MISHANM/deepseek-ai_janus-Pro-7B-fp16 model is the multimodal understanding and image generation model . It is designed to generate Image to text and high-quality images from textual prompts.
## Model Details
1. Language: English
2. Tasks: Imgae to Text & Text to Image Generation
### Model Example output
This is the model inference output:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66851b2c4461866b07738832/5RotptYgkmhInup-jseVz.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66851b2c4461866b07738832/u7ms70_UQnq64Ze_EKtzF.png)
## How to Get Started with the Model
```shell
git clone https://github.com/deepseek-ai/Janus.git
cd Janus
pip install -e .
```
## Use the code below to get started with the model.
### Multimodal Understanding(Image to Text).
Using Gradio
```python
import gradio as gr
import torch
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
import base64
from io import BytesIO
def pil_image_to_base64(pil_image):
buffered = BytesIO()
pil_image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return f"data:image/png;base64,{img_str}"
# Initialize the processor and model
model_path = "MISHANM/deepseek-ai_janus-Pro-7B-fp16"
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True
)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
def multimodal_understanding(image, question):
# Convert PIL Image to base64 string
image_base64 = pil_image_to_base64(image)
# Prepare the conversation
conversation = [
{
"role": "<|User|>",
"content": f"<image_placeholder>\n{question}",
"images": [image_base64],
},
{"role": "<|Assistant|>", "content": ""},
]
# Load images and prepare inputs
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(vl_gpt.device)
# Run image encoder to get the image embeddings
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
# Run the model to get the response
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False,
use_cache=True,
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return answer
# Gradio interface
interface = gr.Interface(
fn=multimodal_understanding,
inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your question here...")],
outputs="text",
title="Multimodal Understanding ",
description="Upload an image and ask a question about it."
)
interface.launch(share=True)
```
### Text to Image Generation.
```python
import os
import gradio as gr
import PIL.Image
import torch
import numpy as np
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
# Initialize the processor and model
model_path = "MISHANM/deepseek-ai_janus-Pro-7B-fp16"
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True
)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
@torch.inference_mode()
def generate_image(prompt_text, parallel_size=1):
# Prepare the conversation
conversation = [
{
"role": "<|User|>",
"content": prompt_text,
},
{"role": "<|Assistant|>", "content": ""},
]
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=conversation,
sft_format=vl_chat_processor.sft_format,
system_prompt="",
)
prompt = sft_format + vl_chat_processor.image_start_tag
input_ids = vl_chat_processor.tokenizer.encode(prompt)
input_ids = torch.LongTensor(input_ids)
tokens = torch.zeros((parallel_size*2, len(input_ids)), dtype=torch.int).cuda()
for i in range(parallel_size*2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
image_token_num_per_image = 576
img_size = 384
patch_size = 16
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()
for i in range(image_token_num_per_image):
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None)
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
cfg_weight = 5
logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond)
probs = torch.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
dec = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size])
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
return PIL.Image.fromarray(visual_img[0])
# Create Gradio interface
interface = gr.Interface(
fn=generate_image,
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
outputs="image",
title="Text-to-Image Generation",
description="Enter a text prompt to generate an image."
)
interface.launch(share=True)
```
## Uses
### Direct Use
The model is designed to convert images into text and text into images based on textual descriptions. It is useful for creative projects, content creation, and artistic exploration
### Out-of-Scope Use
The model is not designed to generate images containing explicit or harmful content. It may also struggle with highly abstract or nonsensical prompts.
## Bias, Risks, and Limitations
The model may inherit biases from its training data, potentially producing stereotypical or biased images based on the given prompts.
### Recommendations
Users should be mindful of potential biases and limitations. It is advisable to review the generated content for accuracy and appropriateness.
## Citation Information
```
@misc{MISHANM/deepseek-ai_janus-Pro-7B-fp16,
author = {Mishan Maurya},
title = {Introducing Image to Text & Text to Image Generation model},
year = {2025},
publisher = {Hugging Face},
journal = {Hugging Face repository},
}
```