MISHANM/Tagalog-Filipino_eng_text_generation_Llama3_8B_instruction
This model has been carefully adjusted for proficiency in the Tagalog-Filipino language. It is designed to efficiently manage tasks involving both English and Tagalog-Filipino, such as question-answering and translation. By employing advanced natural language processing techniques, it provides accurate and context-aware answers, ensuring a deep understanding of the subtleties of Tagalog-Filipino. As a result, its outputs are reliable and relevant in a wide range of contexts
Model Details
- Language: Tagalog-Filipino
- Tasks: Question Answering(Tagalog-Filipino to Tagalog-Filipino) , Translation (Tagalog-Filipino to English)
- Base Model: meta-llama/Meta-Llama-3-8B-Instruct
Training Details
The model is trained on approx 105,234 instruction samples.
- GPUs: 2*AMD Instinct™ MI210 Accelerators
- Training Time: 15:41:46
Inference with Transformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Tagalog-Filipino_eng_text_generation_Llama3_8B_instruction"
model = AutoModelForCausalLM.from_pretrained(model_path,device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
# Format the prompt according to the chat template
messages = [
{
"role": "system",
"content": "You are a Tagalog-Filipino language expert and linguist, with same knowledge give response in Tagalog-Filipino language.",
},
{"role": "user", "content": prompt}
]
# Apply the chat template
formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"
# Tokenize and generate output
inputs = tokenizer(formatted_prompt, return_tensors="pt")
output = model.generate(
**inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Example usage
prompt = """Ipaliwanag kung paano mag-log in sa isang computer."""
translated_text = generate_text(prompt)
print(translated_text)
Citation Information
@misc{MISHANM/Tagalog-Filipino_eng_text_generation_Llama3_8B_instruction,
author = {Mishan Maurya},
title = {Introducing Fine Tuned LLM for Tagalog-Filipino Language},
year = {2025},
publisher = {Hugging Face},
journal = {Hugging Face repository},
}
- PEFT 0.12.0
- Downloads last month
- 26
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for MISHANM/Tagalog-Filipino_eng_text_generation_Llama3_8B_instruction
Base model
meta-llama/Meta-Llama-3-8B-Instruct