MISHANM/Cantonese_eng_text_generation_Llama3_8B_instruction
This model has undergone meticulous fine-tuning for Cantonese language compatibility. It is equipped to handle question-answering and translation tasks between English and Cantonese. Leveraging sophisticated natural language processing methodologies, it delivers precise and context-sensitive responses, ensuring a comprehensive grasp of Cantonese nuances. Consequently, its outputs are dependable and pertinent across various scenarios.
Model Details
- Language: Cantonese
- Tasks: Question Answering(Cantonese to Cantonese) , Translation (Tibetan to Cantonese)
- Base Model: meta-llama/Meta-Llama-3-8B-Instruct
Training Details
The model is trained on approx 109,942 instruction samples.
- GPUs: 4*AMD Radeon™ PRO V620
- Training Time: 61:07:36
Inference with HuggingFace
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Cantonese_eng_text_generation_Llama3_8B_instruction"
model = AutoModelForCausalLM.from_pretrained(model_path,device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Function to generate text
def generate_text(prompt, max_length=500, temperature=0.9):
# Format the prompt according to the chat template
messages = [
{
"role": "system",
"content": "You are a Cantonese language expert and linguist, with same knowledge give response in Cantonese language.",
},
{"role": "user", "content": prompt}
]
# Apply the chat template
formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"
# Tokenize and generate output
inputs = tokenizer(formatted_prompt, return_tensors="pt")
output = model.generate(
**inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Example usage
prompt = """佢日日搭的士出入,好似幾百萬未開頭噉。"""
translated_text = generate_text(prompt)
print(translated_text)
Citation Information
@misc{MISHANM/Cantonese_eng_text_generation_Llama3_8B_instruction,
author = {Mishan Maurya},
title = {Introducing Fine Tuned LLM for Cantonese Language},
year = {2025},
publisher = {Hugging Face},
journal = {Hugging Face repository},
}
- PEFT 0.12.0
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for MISHANM/Cantonese_eng_text_generation_Llama3_8B_instruction
Base model
meta-llama/Meta-Llama-3-8B-Instruct