File size: 144,505 Bytes
2e79461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 |
# Copyright 2024 Hao Zhang
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union, Dict
import torch
import torch.nn as nn
import time
import transformers
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
# from ...constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from videoxlpro.videoxlpro.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM
import inspect
import math
import warnings
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.integrations import is_deepspeed_zero3_enabled
from .configuration_videoxlpro_llavaqwen import Qwen2Config
from videoxlpro.videoxlpro.train.modeling_utils import optional_grad_ctx, compute_loss, BeaconModelOutput
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
_CONFIG_FOR_DOC = "Qwen2Config"
QWEN2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"Qwen/Qwen2-7B-beta",
# See all Qwen2 models at https://huggingface.co/models?filter=qwen2
]
import os
import torch
import time
import numpy as np
import torch.distributed as dist
from transformers.utils import logging
from transformers import AutoTokenizer
from itertools import cycle
from typing import List
logger = logging.get_logger(__name__)
class Memory(torch.nn.Module):
def __init__(
self,
model_config,
k_seq_dim:int=2,
v_seq_dim:int=2,
):
"""Setup necessary attributes."""
super().__init__()
self.config = model_config
# initialize necessary parameters
self.k_seq_dim = k_seq_dim
self.v_seq_dim = v_seq_dim
self.rng = np.random.default_rng(42)
self._post_validation()
self.reset()
@property
def beacon_token(self):
return self.config.vocab_size
def _post_validation(self, verbose=True):
assert self.config.beacon_window >= self.config.beacon_stride, f"Make sure the beacon_window {self.config.beacon_window} >= beacon_stride {self.config.beacon_stride}!"
for ratio in self.config.beacon_ratio:
assert ratio >= 0, f"Make sure all beacon ratios are greater than or equal to 0, found {self.config.beacon_ratio}!"
assert self.config.beacon_attn in ["segmentation", "step-expansion", "full-coverage"], f"beacon_attn {self.config.beacon_attn} not implemented!"
assert self.config.beacon_ratio_mix in ["instance-random", "step-random", "sequence"] or "adapt-" in self.config.beacon_ratio_mix, f"beacon_ratio_mix {self.config.beacon_ratio_mix} not implemented!"
# assert self.config.beacon_pos in ["append", "interleave"], f"beacon_pos {self.config.beacon_pos} not implemented!"
if self.config.beacon_pos == "interleave":
assert self.config.beacon_window == self.config.beacon_stride, f"Make sure the beacon_window equals to beacon_stride when using interleaving mode."
if self.config.beacon_parallel_window > 1:
assert self.config._attn_implementation != "flash_attention_2", f"Currently parallel window does not support flash_attention_2!"
self._cpu = torch.device("cpu")
if verbose:
info = f"applying activation beacon on {self.config.beacon_param} (the beacon embedding is initialized from {'bos' if self.config.beacon_embed_init == 'bos' else 'eos'} embedding, the beacon tokens are positioned with '{self.config.beacon_pos}' method), with window size {self.config.beacon_window}, stride {self.config.beacon_stride}, {self.config.beacon_attn} attention{' (attending to previous beacons)' if self.config.beacon_attend_prev else ' (no attending to previous beacons)'}, sink size {self.config.beacon_sink_size}, compression ratio {self.config.beacon_ratio} (mixed by {self.config.beacon_ratio_mix})..."
logger.info(info)
def set(self, verbose=True, **kwargs):
"""
Set attributes out of the constructor.
"""
for k, v in kwargs.items():
setattr(self.config, k, v)
self._post_validation(verbose=verbose)
def reset(self):
"""Initialize attributes for a new sequence."""
# the cursor pointing to the start of the current window
self.start_idx = 0
# the cursor pointing to the end of the current window
self.end_idx = 0
# the beacon sizes of all strides
self.all_beacon_sizes = []
# the loss per batch
self.batch_loss = None
# the valid token number per batch
self.valid_token_num = None
# the step index for processing the input_ids
self.step_idx = 0
# used in set_compression_ratio
self.compression_ratio = None
# the previous inputs is a full window or not, defaults to True
self.is_full_window = True
# the number of raw activations to preserve in update_memory (only useful when beacon_stride < beacon_window)
self.raw_size_to_cache = 0
# the number of tokens in previous stride that should be compressed by the upcoming beacon
self.interleave_remainder = 0
# compression ratio for the unfinished window
self.interleave_compression_ratio = None
self.beacon_indices = None
self.all_input_ids = None
self.all_attention_mask = None
self.all_labels = None
# NOTE: will be reset in prepare()
self.beacon_skip_first = None
self.beacon_skip_last = None
# the raw activations of recent tokens
self.raw_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
# the attention sink activations
self.sink_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
# the beacon activations
self.beacon_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
@property
def all_sequence_length(self):
if self.all_input_ids is None:
return 0
else:
return self.all_input_ids.shape[1]
@property
def batch_size(self):
if self.all_input_ids is None:
return 0
else:
return self.all_input_ids.shape[0]
@property
def finish(self):
is_finish = self.end_idx == self.all_sequence_length
return is_finish
@property
def dtype(self):
return self.config.torch_dtype
@property
def min_value(self):
return torch.finfo(self.dtype).min
@property
def max_position_embeddings(self):
max_position_embeddings = self.config.max_position_embeddings
if getattr(self.config, "rope_scaling", None) is not None:
scaling_factor = self.config.rope_scaling["factor"]
max_position_embeddings = max_position_embeddings * scaling_factor
return max_position_embeddings
@property
def beacon_window(self):
if (
self.beacon_skip_last is not None
and self.start_idx < self.beacon_skip_last
and self.start_idx + self.config.beacon_window > self.beacon_skip_last
):
#print(self.start_idx + self.config.beacon_window,self.beacon_skip_last)
#print(self.beacon_skip_last,self.start_idx < self.beacon_skip_last,self.start_idx + self.config.beacon_window > self.beacon_skip_last)
return self.beacon_skip_last - self.start_idx
else:
#print(self.start_idx + self.config.beacon_window,self.beacon_skip_last)
#print(self.beacon_skip_last,self.start_idx < self.beacon_skip_last,self.start_idx + self.config.beacon_window > self.beacon_skip_last)
return self.config.beacon_window
@property
def beacon_stride(self):
if (
self.beacon_skip_last is not None
and self.start_idx < self.beacon_skip_last
and self.start_idx + self.config.beacon_window > self.beacon_skip_last
):
return self.beacon_skip_last - self.start_idx
else:
return self.config.beacon_stride
def get_memory(self):
past_key_values = []
for layer_idx in range(self.config.num_hidden_layers):
sink_key, sink_value = self.sink_activations[layer_idx]
beacon_key, beacon_value = self.beacon_activations[layer_idx]
raw_key, raw_value = self.raw_activations[layer_idx]
key = cat_tensor([
sink_key, beacon_key, raw_key,
], dim=self.k_seq_dim)
value = cat_tensor([
sink_value, beacon_value, raw_value,
], dim=self.v_seq_dim)
layer_past_key_values = (key, value)
past_key_values.append(layer_past_key_values)
return past_key_values
def get_memory_size(self):
"""
Sink memory size, beacon memory size and raw memory size.
"""
sink_memory_size = 0
beacon_memory_size = 0
raw_memory_size = 0
if self.sink_activations[0][0] is not None:
sink_memory_size += self.sink_activations[0][0].shape[self.k_seq_dim]
if self.beacon_activations[0][0] is not None:
beacon_memory_size += self.beacon_activations[0][0].shape[self.k_seq_dim]
if self.raw_activations[0][0] is not None:
raw_memory_size += self.raw_activations[0][0].shape[self.k_seq_dim]
return sink_memory_size, beacon_memory_size, raw_memory_size
def prepare(self, input_ids, attention_mask, labels, skip_first=None, skip_last=None):
"""
Prepare inputs for the model. These inputs belong to the same sequence.
"""
# assert input_ids.shape[0] == 1, "Make sure the batch size is 1!"
# assert attention_mask is None or (attention_mask == 1).all(), "Make sure there is no padding!"
self._device = input_ids.device
# accumulate input_ids
if self.all_input_ids is None:
self.all_input_ids = input_ids.cpu()
else:
self.all_input_ids = torch.cat([self.all_input_ids, input_ids.cpu()], dim=1)
# accumulate attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, device=torch.device("cpu"))
if self.all_attention_mask is None:
self.all_attention_mask = attention_mask.cpu()
else:
self.all_attention_mask = torch.cat([self.all_attention_mask, attention_mask.cpu()], dim=1)
# accumulate labels if exisits
if labels is not None:
# rotate labels in advance so that the loss of the last token is not ignored in every window
labels = torch.cat([labels[:, 1:].cpu(), torch.tensor([-100]).expand(labels.shape[0], 1)], dim=1)
if self.all_labels is None:
self.all_labels = labels.cpu()
else:
self.all_labels = torch.cat([self.all_labels, labels], dim=1)
assert self.all_input_ids.shape[1] == self.all_labels.shape[1], f"Found inconsistent all_input_ids {self.all_input_ids.shape} and all_labels {self.all_labels.shape}!"
# how many tokens to skip at the beginning of the sequence? (They will be packed in a single chunk and processed by the model, after which their activations will be cached in sink_activations.)
if skip_first is not None:
assert self.config.beacon_parallel_window == 1, f"Make sure the parallel window is set to 1 when using beacon_skip!"
assert self.config.beacon_window == self.config.beacon_stride, f"Make sure the beacon_window equals to beacon_stride when using beacon_skip."
assert self.config.beacon_sink_size == 0, f"Make sure the beacon_sink_size is set to 0 when using beacon_skip!"
# stop compression after how many tokens
if skip_last is not None:
skip_first = skip_first if skip_first is not None else 0
# assert (skip_last - skip_first) % self.config.beacon_window == 0, f"skip_last ({skip_last}) - skip_first ({skip_first}) = {skip_last - skip_first} is not divisible by window size {self.config.beacon_window}"
assert self.config.beacon_sink_size == 0, "Make sure the beacon_sink_size is zero when using skip_last!"
self.beacon_skip_first = skip_first
self.beacon_skip_last = skip_last
def set_compression_ratio(self, start_idx, end_idx):
"""Choose a condensing ratio from self.config.beacon_ratio"""
def filter_ratio(ratios, stride):
valid_ratios = []
for ratio in ratios:
# stride must be bigger than condensing ratio because we there must be at least one beacon
if stride < ratio:
continue
# the stride must be evenly divisible by condensing ratio
if ratio > 0 and (stride % ratio) != 0:
continue
# when training, ratio=0 is valid if previous windows contain beacon or later windows contain beacon
if ratio == 0 and self.training:
previous_has_zero = -1 in self.all_beacon_sizes
following_has_nonzero = (start_idx + stride + self.beacon_window) <= self.all_sequence_length
if previous_has_zero or (not following_has_nonzero):
continue
valid_ratios.append(ratio)
assert len(valid_ratios), f"Cannot find valid condensing ratio (among {ratios}) for stride {stride}!"
return valid_ratios
def get_max_length(ratios):
max_lengths = []
for compression_ratio in ratios:
if compression_ratio > 0:
# NOTE: here we must use the scaled position embeddings
max_lengths.append((self.max_position_embeddings - self.beacon_window) * compression_ratio + self.beacon_window)
else:
max_lengths.append(self.max_position_embeddings)
return max_lengths
if len(self.config.beacon_ratio) == 1:
return self.config.beacon_ratio[0]
ratio_mix = self.config.beacon_ratio_mix
beacon_ratio = filter_ratio(self.config.beacon_ratio, self.beacon_stride)
if ratio_mix == "instance-random":
if self.compression_ratio is None:
beacon_ratio = self.rng.choice(beacon_ratio).tolist()
self.compression_ratio = beacon_ratio
else:
beacon_ratio = self.compression_ratio
elif ratio_mix == "step-random":
beacon_ratio = self.rng.choice(beacon_ratio).tolist()
elif ratio_mix == "sequence":
if self.compression_ratio is None:
self.compression_ratio = cycle(beacon_ratio)
beacon_ratio = next(self.compression_ratio)
elif "adapt" in ratio_mix:
if self.compression_ratio is None:
future_length = int(ratio_mix.split("-")[1])
sequence_length = self.all_input_ids.shape[1] + future_length
max_lengths = get_max_length(beacon_ratio)
# ascendingly sort the max lengths
valid_max_lengths_and_indices = [x for x in enumerate(max_lengths) if x[1] >= sequence_length]
if len(valid_max_lengths_and_indices):
minimum_length_index = min(valid_max_lengths_and_indices, key=lambda x: x[1])[0]
# use the minimal possible length for this sequence (the smallest fold ratio)
beacon_ratio = beacon_ratio[minimum_length_index]
else:
beacon_ratio = max(beacon_ratio)
# logger.warning(f"Failed to find valid fold window and size for sequence length {sequence_length}, as the maximum theoretical length is {max(max_lengths)}. Fall back to use the maximum one: {beacon_ratio}.")
self.compression_ratio = beacon_ratio
else:
beacon_ratio = self.compression_ratio
return beacon_ratio
def step(self):
# parallel does not support stride < window
# parallel does not support non-compression
# the input_ids is not long enough for parallel
if (
self.config.beacon_parallel_window > 1
and self.config.beacon_stride == self.config.beacon_window
and 0 not in self.config.beacon_ratio
and self.all_input_ids[:, self.end_idx:].shape[1] >= self.config.beacon_parallel_window * self.config.beacon_window
):
input_ids_list = []
attention_mask_list = []
position_ids_list = []
labels_list = []
beacon_size_list = []
beacon_indices_list = []
for i in range(self.config.beacon_parallel_window):
if i == 0:
_input_ids, _attention_mask, _position_ids, _past_key_values, _labels = self._step()
else:
_input_ids, _attention_mask, _position_ids, _past_key_values, _labels = self._step(ignore_memory=True)
input_ids_list.append(_input_ids)
attention_mask_list.append(_attention_mask)
position_ids_list.append(_position_ids)
labels_list.append(_labels)
beacon_size_list.append(_past_key_values[0][2])
beacon_indices_list.append(_past_key_values[0][3])
if i == 0:
past_key_values = _past_key_values
if past_key_values[0][0] is None:
mem_size = 0
else:
mem_size = past_key_values[0][0].shape[self.k_seq_dim]
else:
# no memory
assert _past_key_values[0][0] is None
batch_size = self.all_input_ids.shape[0]
# NOTE: we do not need to repliace beacon tokens for the last window
seq_len = sum(x.shape[1] for x in input_ids_list) + sum(beacon_size_list) - beacon_size_list[-1]
input_ids = _input_ids.new_zeros((batch_size, seq_len)) + self.beacon_token
# all 0
attention_mask = _attention_mask.new_zeros((batch_size, 1, seq_len, mem_size + seq_len)) + self.min_value
position_ids = torch.arange(mem_size + seq_len, device=self._device).expand(batch_size, mem_size + seq_len)
# 2 indicates the beacon token is used for replication
beacon_indices = beacon_indices_list[0].new_zeros(seq_len) + 2
if _labels is not None:
# -100 because no loss on beacon tokens
labels = _labels.new_zeros((batch_size, seq_len)) - 100
else:
labels = None
start_idx = 0
position_offset = mem_size
for i in range(self.config.beacon_parallel_window):
beacon_size = beacon_size_list[i]
# populate input_ids
_input_ids = input_ids_list[i]
cur_seq_len = _input_ids.shape[1]
input_ids[:, start_idx: start_idx + cur_seq_len] = _input_ids
# populate attention_mask and position_ids
_attention_mask = attention_mask_list[i]
_position_ids = position_ids_list[i]
# the attention mask in the first window contains the mask for memory, which is redundant here
if i == 0:
_attention_mask = _attention_mask[:, :, :, mem_size:]
_position_ids = _position_ids[:, mem_size:] - mem_size
attention_mask[:, :, start_idx: start_idx + cur_seq_len, mem_size + start_idx: mem_size + start_idx + cur_seq_len] = _attention_mask
position_ids[:, mem_size + start_idx: mem_size + start_idx + cur_seq_len] = _position_ids + position_offset
# populate beacon_indices
_beacon_indices = beacon_indices_list[i]
beacon_indices[start_idx: start_idx + cur_seq_len] = _beacon_indices
# populate labels
if labels is not None:
# populate labels
_labels = labels_list[i]
labels[:, start_idx: start_idx + cur_seq_len] = _labels
# NOTE: when there is sink activations, we need to bias the position_ids for the first window
if i == 0 and self.config.beacon_sink_size > 0 and self.sink_activations[0][0] is None:
position_offset += 1
# modify the attention and position for replicated beacon tokens
if i != self.config.beacon_parallel_window - 1:
replicate_beacon_row_start = start_idx + cur_seq_len
replicate_beacon_col_start = mem_size + start_idx + cur_seq_len
# NOTE: any attention mask is okay for replicated beacon tokens, but for convenience we use the causal mask
attention_mask[:, :, replicate_beacon_row_start: replicate_beacon_row_start + beacon_size, replicate_beacon_col_start: replicate_beacon_col_start + beacon_size] = _attention_mask.new_full((beacon_size, beacon_size), self.min_value).triu(1)
# NOTE: all future tokens can attend to the replicated beacon tokens
attention_mask[:, :, replicate_beacon_row_start + beacon_size:, replicate_beacon_col_start: replicate_beacon_col_start + beacon_size] = 0
# NOTE: the position of replicated beacon tokens start from 0
position_ids[:, mem_size + start_idx + cur_seq_len: mem_size + start_idx + cur_seq_len + beacon_size] = torch.arange(position_offset, position_offset + beacon_size, device=_input_ids.device)[None:]
start_idx += cur_seq_len + beacon_size
position_offset += beacon_size
# the memory is visible to all subsequent tokens
attention_mask[:, :, :, :max(mem_size, self.config.beacon_sink_size)] = 0
# NOTE: modify beacon_indices
for i, (key, value, _, _) in enumerate(past_key_values):
past_key_values[i] = (key, value, sum(beacon_size_list), beacon_indices)
# NOTE: update _beacon_indices so that the next-token logits can be properly sliced out in self.output()
self.beacon_indices = beacon_indices
return input_ids, attention_mask, position_ids, past_key_values, labels
else:
return self._step()
def _step(self, ignore_memory=False):
"""
Yield inputs for the current sliding window, including the input_ids, attention_mask, position_ids, and past_key_values.
"""
#============================================#
# Check whether the inputs fulfills a window.
#============================================#
#print(self.beacon_window,end='beaconwindow\n')
# the starting position of the current window w.r.t. the start of the current input sequence
start_idx = self.start_idx
# the end position of the current window w.r.t. the start of the current input sequence
end_idx = start_idx + self.beacon_window
# indicates if the current window is completely filled by raw activations and new tokens
# we only append beacon tokens for full windows
if end_idx > self.all_sequence_length:
# the input is shorter than the initial window size
end_idx = self.all_sequence_length
is_full_window = False
else:
is_full_window = True
# NOTE: in training, the entire sequence is input to the model at once
# In the last window, we do not need to append beacons because they will not be used at all
if self.training and end_idx == self.all_sequence_length:
next_start_idx = start_idx
is_full_window = False
raw_size_to_cache = -1
beacon_size = 0
compression_ratio = -1
# NOTE: we do not compress the beacon_skip_first tokens at the beginning of the sequence
elif self.step_idx == 0 and self.beacon_skip_first is not None:
end_idx = start_idx + self.beacon_skip_first
assert end_idx <= self.all_sequence_length
next_start_idx = end_idx
is_full_window = True
raw_size_to_cache = -1
beacon_size = 0
compression_ratio = -1
# NOTE: we do not compress tokens after beacon_skip_last tokens
elif self.beacon_skip_last is not None and start_idx >= self.beacon_skip_last:
end_idx = min(start_idx + self.beacon_window, self.all_sequence_length)
next_start_idx = end_idx
is_full_window = False
raw_size_to_cache = -1
beacon_size = 0
compression_ratio = -1
else:
#============================================#
# Set compression ratio
#============================================#
if self.config.beacon_pos == "append":
if is_full_window:
# determine compression ratio for the current window
beacon_stride = self.beacon_stride
compression_ratio = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx)
if compression_ratio > 0:
# the stride must be evenly divisible by compression_ratio
beacon_size = beacon_stride // compression_ratio
else:
# the raw activations are used as beacon activations
beacon_size = -1
# forward start_idx and end_idx
next_start_idx = start_idx + beacon_stride
# how many raw activations to save
raw_size_to_cache = end_idx - next_start_idx
else:
# no stride because the sequence has finished
next_start_idx = start_idx
# cache all raw activations
raw_size_to_cache = -1
beacon_size = 0
compression_ratio = 0
elif self.config.beacon_pos == "interleave":
# the number of raw tokens in the input_ids
input_size = end_idx - self.end_idx
# set compression ratio once the previous window has finished, otherwise, reuse the interleave_compression_ratio if the input belongs to an unfinished window
if self.is_full_window:
compression_ratio = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx)
self.interleave_compression_ratio = compression_ratio
else:
compression_ratio = self.interleave_compression_ratio
# the beacon size is non-zero even if the window is not full
if compression_ratio > 0:
# this number of beacon tokens will be inserted among the raw tokens
beacon_size = (input_size + self.interleave_remainder) // compression_ratio
else:
# the raw activations are used as beacon activations
beacon_size = -1
if is_full_window:
# move forward one window
next_start_idx = start_idx + self.beacon_stride
# no save raw activations
raw_size_to_cache = 0
else:
# no stride because the sequence has not finished
next_start_idx = start_idx
# cache all recent raw activations to be used in the next window
raw_size_to_cache = -1
#============================================#
# Slice out input_ids (raw tokens in the current window)
#============================================#
input_ids = self.all_input_ids[:, self.end_idx: end_idx].to(self._device)
attention_mask = self.all_attention_mask[:, self.end_idx: end_idx].to(self._device)
if self.all_labels is not None:
labels = self.all_labels[:, self.end_idx: end_idx].to(self._device)
else:
labels = None
batch_size = input_ids.shape[0]
#============================================#
# Insert beacon tokens if necessary.
#============================================#
# t1 = time.time()
if self.config.beacon_pos == "append":
# append beacons if necessary
if is_full_window and beacon_size > 0:
input_ids = torch.cat([input_ids, input_ids.new_full((batch_size, beacon_size), self.beacon_token)], dim=1)
# NOTE: prepend 1 to attention_mask because we have past_key_values
attention_mask = torch.cat([attention_mask, attention_mask.new_ones(batch_size, beacon_size)], dim=1)
if labels is not None:
labels = torch.cat([labels, labels.new_zeros(batch_size, beacon_size) - 100], dim=1)
elif self.config.beacon_pos == "interleave":
input_len = input_ids.shape[1]
if beacon_size > 0:
# insert beacon tokens in between raw tokens
input_ids_with_beacons = input_ids.new_full((input_ids.shape[0], input_len + beacon_size), self.beacon_token)
raw_token_indices = torch.arange(input_ids_with_beacons.shape[1], device=input_ids.device)
interleave_start_idx = compression_ratio - self.interleave_remainder
raw_token_indices = raw_token_indices[raw_token_indices % (compression_ratio + 1) != interleave_start_idx].unsqueeze(0).expand_as(input_ids)
input_ids_with_beacons = input_ids_with_beacons.scatter(dim=1, index=raw_token_indices, src=input_ids)
input_ids = input_ids_with_beacons
# attention mask
attention_mask_with_beacons = attention_mask.new_full((attention_mask.shape[0], attention_mask.shape[1] + beacon_size), 1)
attention_mask_with_beacons = attention_mask_with_beacons.scatter(dim=1, index=raw_token_indices, src=attention_mask)
attention_mask = attention_mask_with_beacons
# labels
if labels is not None:
labels_with_beacons = labels.new_full((labels.shape[0], labels.shape[1] + beacon_size), -100)
labels_with_beacons = labels_with_beacons.scatter(dim=1, index=raw_token_indices, src=labels)
labels = labels_with_beacons
if compression_ratio > 0:
# update the reminder
self.interleave_remainder = (input_len + self.interleave_remainder) % compression_ratio
# NOTE: skip computing loss in the very first window because the beacon tokens will be used in the next window
if self.training and self.step_idx == 0 and not (self.config.beacon_pos == 'interleave' and self.config.beacon_attn == 'full-coverage'):
labels[:] = -100
# t2 = time.time()
#============================================#
# Prepare beacon_indices for interleave beacon_pos, a boolean mask where True indicates the beacon tokens.
# The mask is applied on the inputs of the entire window, including the cached activations and the input_ids.
#============================================#
beacon_indices = (input_ids[0] == self.beacon_token).long()
if self.is_full_window:
self.beacon_indices = torch.tensor([], dtype=torch.long, device=input_ids.device)
# the beacon_indices always tracks the beacon tokens in both the cached activations and the input_ids
beacon_indices = torch.cat([self.beacon_indices, beacon_indices])
# record the beacon_indices for the next window
self.beacon_indices = beacon_indices
if is_full_window and beacon_size == -1:
# NOTE: the first beacon_stride raw tokens serve as beacon tokens
# we use -1 to indicate these raw tokens, so that the attention mask and position ids will not be modified
beacon_indices[:self.beacon_stride] = -1
# t3 = time.time()
#============================================#
# Prepare past_key_values.
# beacon_size: how many beacon tokens are there in the input_ids
# beacon_indices: the boolean mask for the entire window where True indicates the beacon tokens (for append, the beacon_indices corresponds to input_ids, while for 'interleave', the beacon_indices corresponds to the entire window including both the input_ids and the cached activations)
#============================================#
past_key_values = []
for layer_idx in range(self.config.num_hidden_layers):
if ignore_memory:
key, value = None, None
else:
sink_key, sink_value = self.sink_activations[layer_idx]
beacon_key, beacon_value = self.beacon_activations[layer_idx]
raw_key, raw_value = self.raw_activations[layer_idx]
key = cat_tensor([
sink_key, beacon_key, raw_key,
], dim=self.k_seq_dim)
value = cat_tensor([
sink_value, beacon_value, raw_value,
], dim=self.v_seq_dim)
layer_past_key_values = (key, value, beacon_size, beacon_indices)
past_key_values.append(layer_past_key_values)
# t4 = time.time()
#============================================#
# Prepare attention_mask and position_ids.
#============================================#
first_key = past_key_values[0][0]
mem_size = first_key.shape[self.k_seq_dim] if first_key is not None else 0
if mem_size > 0:
attention_mask = torch.cat([attention_mask.new_ones(batch_size, mem_size), attention_mask], dim=1)
input_length = input_ids.shape[1]
position_ids = torch.arange(attention_mask.shape[-1], dtype=torch.long, device=self._device).repeat(batch_size, 1)
if self.config._attn_implementation == "flash_attention_2":
assert self.config.beacon_attn == "full-coverage", f"Make sure to set beacon_attn='full-coverage' when using flash attention! Found {self.config.beacon_attn}."
if 0 in attention_mask:
pass
else:
attention_mask = None
elif self.config._attn_implementation == "sdpa" and self.config.beacon_pos == "append" and beacon_size <= 0 and (input_length == 1 or mem_size == 0):
attention_mask = None
else:
attention_mask, position_ids = self._make_4d_attention_mask_and_position_ids(
attention_mask,
position_ids,
mem_size,
beacon_size,
compression_ratio,
)
# t5 = time.time()
# print(f"prepare inputs {t2-t1}, prepare indices {t3-t2}, prepare memory {t4-t3}, prepare attention mask {t5-t4}")
#============================================#
# Update necessary attributes.
#============================================#
# keep track of whether the current inputs is a full_window
self.is_full_window = is_full_window
# keep track of the raw_size_to_cache
self.raw_size_to_cache = raw_size_to_cache
# involked in self.output()
self.all_beacon_sizes.append(beacon_size)
# update start_idx and end_idx
# NOTE: the update of start_idx will influence self.beacon_window and self.beacon_stride in case self.beacon_skip_last is not None
# Therefore, we must make sure all calls to self.beacon_window and self.beacon_stride happen before the update of start_idx
self.start_idx = next_start_idx
self.end_idx = end_idx
self.step_idx += 1
# print(f"start_idx: {start_idx}")
# print(f"next_start_idx: {next_start_idx}")
# print(f"beacon_size: {beacon_size}")
# print(f"raw_size_to_cache: {raw_size_to_cache}")
# print(f"interleave_remainder:{self.interleave_remainder}")
# print(f"input_ids: {input_ids}")
# print(f"beacon_indices: {beacon_indices}")
# print(f"position_ids: {position_ids}")
# print(f"attention_mask:\n{attention_mask == 0}")
# x = input()
# if x == "s":
# return
return input_ids, attention_mask, position_ids, past_key_values, labels
def update_memory(self, past_key_values):
"""
Accumulate beacon activations and raw activations.
"""
for layer_idx, (key, value, beacon_size, beacon_indices) in enumerate(past_key_values):
# NOTE: the past_key_values are incrementally returned (only the new keys and values are returned)
previous_raw_key, previous_raw_value = self.raw_activations[layer_idx]
if self.beacon_skip_first is not None and self.sink_activations[layer_idx][0] is None:
assert key.shape[self.k_seq_dim] == self.beacon_skip_first
assert value.shape[self.k_seq_dim] == self.beacon_skip_first
self.sink_activations[layer_idx] = [
key,
value,
]
# NOTE: no need to update raw activations and beacon activations as all activations are kept as sink activations
continue
if self.beacon_activations[layer_idx][0] is None and self.config.beacon_sink_size > 0:
# save the sink activations
# NOTE: we do not slice the key/value activations, which may cause duplication when beacon_ratio=-1 for the first window, but it's okay
self.sink_activations[layer_idx] = [
slice_tensor(key, end=self.config.beacon_sink_size, dim=self.k_seq_dim),
slice_tensor(value, end=self.config.beacon_sink_size, dim=self.v_seq_dim),
]
if not self.is_full_window:
# this means the current input does not fulfill a window
# thus, the key and value are all raw activations, and we accumulate them until the window is fulfilled
assert self.raw_size_to_cache == -1
raw_key = cat_tensor([
previous_raw_key,
key
], dim=self.k_seq_dim)
raw_value = cat_tensor([
previous_raw_value,
value
], dim=self.v_seq_dim)
self.raw_activations[layer_idx] = (raw_key, raw_value)
else:
# NOTE: use the correct previous_beacon_key and value!
previous_beacon_key, previous_beacon_value = self.beacon_activations[layer_idx]
beacon_key, beacon_value, raw_key, raw_value = self._extract_beacon_and_raw_memory(
key,
value,
previous_beacon_key,
previous_beacon_value,
previous_raw_key,
previous_raw_value,
beacon_indices,
)
self.beacon_activations[layer_idx] = (beacon_key, beacon_value)
self.raw_activations[layer_idx] = (raw_key, raw_value)
def update_loss(self, batch_loss, valid_token_num):
"""
Accumulate loss for later perplexity computation and backward pass.
"""
if self.batch_loss is None:
# NOTE: multiply valid_token_num because batch_loss is divided by it in advance
self.batch_loss = batch_loss * valid_token_num
self.valid_token_num = valid_token_num
else:
# NOTE: avoid in-place operations, otherwise there will be gradient errors in training
self.batch_loss = self.batch_loss + batch_loss * valid_token_num
self.valid_token_num = self.valid_token_num + valid_token_num
def output(self, model_outputs):
"""
Override loss with accumulated loss. Update the next-token logits.
"""
# override loss
if self.batch_loss is not None:
# here the batch_loss is the summation of all token losses in each element
loss = self.batch_loss.sum() / self.valid_token_num.sum()
# NOTE: prevent nan
batch_loss = self.batch_loss / self.valid_token_num
if (self.valid_token_num == 0).any():
batch_loss = batch_loss.masked_fill(self.valid_token_num == 0, 0.)
# NOTE: we must use dict to override values, otherwise trainer cannot find loss
model_outputs["loss"] = loss
model_outputs["batch_loss"] = batch_loss
# override last_hidden_states (used in generation)
beacon_size = self.all_beacon_sizes[-1]
# remove logits corresponding to beacon tokens
if beacon_size > 0:
logits = model_outputs["logits"]
beacon_indices = self.beacon_indices[-logits.shape[1]:]
model_outputs["logits"] = logits[:, beacon_indices == 0]
return model_outputs
def _make_4d_attention_mask_and_position_ids(
self,
attention_mask,
position_ids,
mem_size,
beacon_size,
compression_ratio,
):
"""
Convert attention_mask into causal 4D attention_mask (batch_size, head_num, query_len, key_len).
"""
tgt_size = attention_mask.size(-1) - mem_size
dtype = self.dtype
min_value = self.min_value
device = self._device
batch_size, src_size = attention_mask.size()
# square for memory, and lower triangular for input_ids
causal_mask = torch.full((tgt_size, tgt_size), min_value, device=device, dtype=dtype)
mask_cond = torch.arange(causal_mask.size(-1), device=device)
causal_mask.masked_fill_(mask_cond < (mask_cond + 1).view(causal_mask.size(-1), -1), 0)
causal_mask = torch.cat([torch.zeros(tgt_size, mem_size, dtype=dtype, device=device), causal_mask], dim=-1)
causal_mask = causal_mask[None, None, ...].expand(batch_size, 1, tgt_size, src_size)
# 1 for non-padding tokens
expand_mask = attention_mask[:, None, None, :].expand(batch_size, 1, tgt_size, src_size)
invert_mask = 1.0 - expand_mask
###add
# invert_mask = ~ expand_mask
invert_mask.masked_fill_(invert_mask.bool(), min_value)
attention_mask = causal_mask.masked_fill(invert_mask.bool(), min_value)
if self.config.beacon_attn == "step-expansion":
# each beacon can attend to one more sub-interval than its predecessor
if self.config.beacon_pos == "append" and beacon_size > 0:
window_size = self.beacon_window
window_size_with_beacon = window_size + beacon_size
beacon_start_idx = -beacon_size
# batch_size, head_num, window_size
reference_attention_mask = attention_mask[..., -beacon_size - 1, -window_size_with_beacon: -beacon_size]
# compression_ratio, 2 * compression_ratio, ..., beacon_size * compression_ratio
beacon_arange = torch.arange(1, beacon_size + 1, device=device) * compression_ratio
# 0, 1, 2, ..., window_size - 1
ordinal_arange = torch.arange(window_size, device=device)
# beacon_size, window_size
valid_pos = ordinal_arange.expand(beacon_size, window_size) < beacon_arange.unsqueeze(-1)
# beacon_size, window_size
ordinal_attention_mask = torch.where(valid_pos, 0, min_value)
# NOTE: add reference attention_mask so that padding tokens are considered
ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2)
if self.config.beacon_attend_prev:
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).triu(1)
# the beacon token is next to the last ordinal token it attends to
ordinal_position_ids = position_ids[:, -window_size_with_beacon: -beacon_size]
beacon_position_ids = ordinal_position_ids[:, compression_ratio - 1::compression_ratio] + torch.arange(1, beacon_size + 1, device=device)[None]
position_ids[:, beacon_start_idx:] = beacon_position_ids
else:
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).fill_diagonal_(0)
# the beacon token is next to the last ordinal token it attends to
ordinal_position_ids = position_ids[:, -window_size_with_beacon: -beacon_size]
beacon_position_ids = ordinal_position_ids[:, compression_ratio - 1::compression_ratio] + 1
position_ids[:, beacon_start_idx:] = beacon_position_ids
attention_mask[..., beacon_start_idx:, -window_size_with_beacon: -beacon_size] = ordinal_attention_mask
attention_mask[..., beacon_start_idx:, beacon_start_idx:] = beacon_attention_mask
# NOTE: the attention mask should be modified when there is beacon token within the window, not in the input_ids
elif self.config.beacon_pos == "interleave" and (self.beacon_indices == 1).any():
assert self.config.beacon_attend_prev == False, f"Make sure beacon_attend_prev is False if using 'interleave' beacon pos!"
beacon_indices = self.beacon_indices
cur_position_ids = position_ids[:, -len(beacon_indices):]
base_position = cur_position_ids[:, 0] - 1
# NOTE: alternate position so that the position of raw tokens are consistent
position_template = cur_position_ids.new_ones(cur_position_ids.shape)
position_template[:, compression_ratio + 1::compression_ratio + 1] = 0
cur_position_ids = base_position + position_template.cumsum(-1)
position_ids[:, -len(beacon_indices):] = cur_position_ids
cur_input_length = len(beacon_indices)
cur_attention_mask = attention_mask[..., -cur_input_length:, -cur_input_length:]
# mask all beacon columns
cur_attention_mask[..., beacon_indices] = min_value
# beacon tokens can attend to themselves
input_ids_attention_mask = cur_attention_mask[..., -tgt_size:, -tgt_size:]
input_ids_attention_mask[..., range(tgt_size), range(tgt_size)] = 0
elif self.config.beacon_attn == "segmentation":
# each beacon can attend to its corresponding sub-interval
if self.config.beacon_pos == "append" and beacon_size > 0:
window_size = self.beacon_window
window_size_with_beacon = window_size + beacon_size
beacon_start_idx = -beacon_size
# batch_size, head_num, window_size
reference_attention_mask = attention_mask[..., -beacon_size - 1, -window_size_with_beacon: -beacon_size]
# beacon_size, compression_ratio
indices = torch.arange(compression_ratio * beacon_size, device=device).view(beacon_size, -1)
# beacon_size, window_size
ordinal_attention_mask = attention_mask.new_full((beacon_size, window_size), min_value)
ordinal_attention_mask.scatter_(dim=-1, index=indices, value=0)
# NOTE: add reference attention_mask so that padding tokens are considered
ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2)
if self.config.beacon_attend_prev:
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).triu(1)
# the beacon token is next to the last ordinal token it attends to
beacon_position_ids = position_ids.new_full(beacon_size, fill_value=compression_ratio + mem_size)
beacon_position_ids = beacon_position_ids + torch.arange(beacon_size)
position_ids[:, beacon_start_idx:] = beacon_position_ids
else:
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).fill_diagonal_(0)
# the beacon token is next to the last ordinal token it attends to
beacon_position_ids = position_ids.new_full(beacon_size, fill_value=compression_ratio + mem_size)
position_ids[:, beacon_start_idx:] = beacon_position_ids
attention_mask[..., beacon_start_idx:, -window_size_with_beacon: -beacon_size] = ordinal_attention_mask
attention_mask[..., beacon_start_idx:, beacon_start_idx:] = beacon_attention_mask
# beacons of different ratios are blind to others
attention_mask[..., beacon_start_idx:, -beacon_size: beacon_start_idx] = min_value
elif self.config.beacon_pos == "interleave":
raise NotImplementedError
elif self.config.beacon_attn == "full-coverage":
pass
return attention_mask, position_ids
def _extract_beacon_and_raw_memory(
self,
key,
value,
previous_beacon_key,
previous_beacon_value,
previous_raw_key,
previous_raw_value,
beacon_indices,
):
"""Extract beacon and raw memory from the returned key and value when the window is full."""
key = cat_tensor([
previous_raw_key,
key
], dim=self.k_seq_dim)
value = cat_tensor([
previous_raw_value,
value
], dim=self.v_seq_dim)
# NOTE: we use magic slice instead of boolean index here for efficiency
beacon_key = slice_tensor(key, index=torch.logical_or(beacon_indices == 1, beacon_indices == -1), dim=self.k_seq_dim)
beacon_value = slice_tensor(value, index=torch.logical_or(beacon_indices == 1, beacon_indices == -1), dim=self.v_seq_dim)
if self.config.beacon_accum:
beacon_key = cat_tensor([previous_beacon_key, beacon_key], dim=self.k_seq_dim)
beacon_value = cat_tensor([previous_beacon_value, beacon_value], dim=self.v_seq_dim)
if self.raw_size_to_cache > 0:
raw_key = slice_tensor(key, index=beacon_indices == 0, dim=self.k_seq_dim)
raw_key = slice_tensor(raw_key, start=-raw_size_to_cache, dim=self.k_seq_dim)
raw_value = slice_tensor(value, index=beacon_indices == 0, dim=self.v_seq_dim)
raw_value = slice_tensor(raw_value, start=-raw_size_to_cache, dim=self.v_seq_dim)
else:
raw_key = None
raw_value = None
return beacon_key, beacon_value, raw_key, raw_value
def slice_tensor(x, start=None, end=None, step=None, index=None, dim=2):
if x is None:
return None
if end == 0:
return None
if start == x.shape[dim]:
return None
if start is not None and start == end:
return None
if dim == 2:
if index is not None:
return x[:, :, index]
elif start is None and end is not None:
if step is None:
return x[:, :, :end, ...]
else:
return x[:, :, :end:step, ...]
elif start is not None and end is None:
if step is None:
return x[:, :, start:, ...]
else:
return x[:, :, start::step, ...]
elif start is not None and end is not None:
if step is None:
return x[:, :, start:end, ...]
else:
return x[:, :, start:end:step, ...]
elif dim == 1:
if index is not None:
return x[:, :, index]
elif start is None and end is not None:
if step is None:
return x[:, :end, ...]
else:
return x[:, :end:step, ...]
elif start is not None and end is None:
if step is None:
return x[:, start:, ...]
else:
return x[:, start::step, ...]
elif start is not None and end is not None:
if step is None:
return x[:, start:end, ...]
else:
return x[:, start:end:step, ...]
else:
raise NotImplementedError
def cat_tensor(list_of_tensors, dim=-1):
list_of_tensors = [t for t in list_of_tensors if t is not None]
if len(list_of_tensors) > 1:
result = torch.cat(list_of_tensors, dim=dim)
elif len(list_of_tensors) == 1:
result = list_of_tensors[0]
else:
result = None
return result
def slice_activations(activations, start=None, end=None, k_seq_dim=2, v_seq_dim=2):
new_activations = []
for key, value in activations:
new_key = slice_tensor(key, start=start, end=end, dim=k_seq_dim)
new_value = slice_tensor(value, start=start, end=end, dim=v_seq_dim)
new_activations.append([new_key, new_value])
return new_activations
def cat_activations(list_of_activations, k_seq_dim=2, v_seq_dim=2):
assert all(len(x) == len(list_of_activations[0]) for x in list_of_activations), f"Make sure all activations have the same number of layers! Found {[len(x) for x in list_of_activations]}."
new_activations = []
for layer_idx in range(len(list_of_activations[0])):
keys = [x[layer_idx][0] for x in list_of_activations]
values = [x[layer_idx][1] for x in list_of_activations]
new_key = cat_tensor(keys, dim=k_seq_dim)
new_value = cat_tensor(values, dim=v_seq_dim)
new_activations.append([new_key, new_value])
return new_activations
def interleave_activations(main_activations, augment_activations, main_spans, augment_spans, k_seq_dim=2, v_seq_dim=2, device=torch.device("cuda")):
""" Interleave main_activations and augment_activations according to main_span and augment_span.
Args:
main_span: a list of tuples (start_idx, end_idx). when start_idx and end_idx is None, the augment_activations will be plugged in.
augment_span: a list of tuples (start_idx, end_idx)
"""
assert len(main_activations) == len(augment_activations) , f"Make sure main and augment activations have the same number of layers! Found {len(main_activations)} and {len(augment_activations)}!"
assert sum(x[0] is None and x[1] is None for x in main_spans) == len(augment_spans), f"Make sure the number of slots for augmentation (start_idx=None and end_idx=None in main_spans) matches the number of augmentations. Found {sum(x for x in main_spans if x[0] is None and x[1] is None)} slots but {len(augment_spans)} augmentations!"
new_activations = []
for layer_idx in range(len(main_activations)):
main_key, main_value = main_activations[layer_idx]
augment_key, augment_value = augment_activations[layer_idx]
sliced_keys = []
sliced_values = []
augment_idx = 0
for start, end in main_spans:
if start is None and end is None:
# this means the augment key/value should be plugged in
augment_start, augment_end = augment_spans[augment_idx]
sliced_key = slice_tensor(
augment_key,
start=augment_start,
end=augment_end,
dim=k_seq_dim
).to(device)
sliced_value = slice_tensor(
augment_value,
start=augment_start,
end=augment_end,
dim=v_seq_dim
).to(device)
else:
sliced_key = slice_tensor(
main_key,
start=start,
end=end,
dim=k_seq_dim
)
sliced_value = slice_tensor(
main_value,
start=start,
end=end,
dim=v_seq_dim
)
sliced_keys.append(sliced_key)
sliced_values.append(sliced_value)
new_key = cat_tensor(sliced_keys, dim=k_seq_dim)
new_value = cat_tensor(sliced_values, dim=v_seq_dim)
new_activations.append([new_key, new_value])
return new_activations
def softmax(x:np.ndarray, axis=-1, temperature=1):
if isinstance(x, list):
x = np.array(x)
x = x / temperature
x = x - x.max(axis=axis, keepdims=True)
y = np.exp(x)
return y / y.sum(axis=axis, keepdims=True)
def l1_norm(x):
sum_x = sum(x)
x = [y/sum_x for y in x]
return x
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
class Qwen2RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Qwen2RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
class Qwen2RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, q, k, position_ids):
seq_len = max(position_ids.max().item() + 1, k.shape[2])
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
# batch_size, 1, key_len, head_dim
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
q_cos = k_cos[..., -q.shape[2]:, :]
q_sin = k_sin[..., -q.shape[2]:, :]
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
return q_embed, k_embed
class Qwen2LinearScalingRotaryEmbedding(Qwen2RotaryEmbedding):
"""Qwen2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
t = t / self.scaling_factor
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
class Qwen2DynamicNTKScalingRotaryEmbedding(Qwen2RotaryEmbedding):
"""Qwen2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
class Qwen2YarnRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
super().__init__()
self.base = base
self.dim = dim
self.scaling_factor = scaling_factor
self.beta_slow = beta_slow
self.beta_fast = beta_fast
self.max_position_embeddings = max_position_embeddings
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=device, dtype=torch.get_default_dtype()
)
def _get_factor(self, device, dtype):
# the dimension whose index is smaller than fast_dim rotates more than beta_fast
fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
fast_dim = max(math.floor(fast_dim), 0)
# the dimension whose index is bigger than slow_dim rotates less than beta_slow
slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
slow_dim = min(math.ceil(slow_dim), self.dim - 1)
if fast_dim == slow_dim:
slow_dim += 0.001
# NOTE: very important to use full precision here so that the factor is correct
dim_arange = torch.arange(0, self.dim // 2, device=device, dtype=torch.float32)
dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
dim_factor = torch.clamp(dim_factor, 0, 1)
# align with the paper notation
return (1 - dim_factor)
def _get_temperature(self):
if self.scaling_factor <= 1:
return 1.0
return 0.07 * math.log(self.scaling_factor) + 1.0
def _set_cos_sin_cache(self, seq_len, device, dtype):
dim_arange = torch.arange(0, self.dim, 2, device=device) / self.dim
# dim / 2
freq = self.base ** dim_arange
theta = 1 / freq
interleave_theta = theta / self.scaling_factor
factor = self._get_factor(device, dtype)
yarn_theta = factor * theta + (1 - factor) * interleave_theta
self.register_buffer("inv_freq", yarn_theta, persistent=False)
t = torch.arange(seq_len, device=device, dtype=self.inv_freq.dtype)
freqs = torch.outer(t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
# get attention temperature
temperature = self._get_temperature()
self.register_buffer("cos_cached", (emb.cos() * temperature).to(dtype), persistent=False)
self.register_buffer("sin_cached", (emb.sin() * temperature).to(dtype), persistent=False)
self.max_seq_len_cached = seq_len
def forward(self, q, k, position_ids):
seq_len = max(position_ids.max().item() + 1, k.shape[2])
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self.scaling_factor = seq_len / self.max_position_embeddings
self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
q_cos = k_cos[..., -q.shape[2]:, :]
q_sin = k_sin[..., -q.shape[2]:, :]
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
return q_embed, k_embed
# Copied from transformers.models.mistral.modeling_mistral.Qwen2MLP with Qwen2->Qwen2
class Qwen2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
if "mlp" in config.beacon_param:
self.beacon_up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.beacon_up_proj.weight.data.zero_()
self.beacon_up_proj._is_hf_initialized = True
self.beacon_down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.beacon_down_proj.weight.data.zero_()
self.beacon_down_proj._is_hf_initialized = True
def _init_beacon_proj(self, missing_keys):
"""Initialize the beacon projection weight with that of the ordinal projection."""
if "mlp" in self.config.beacon_param:
if is_deepspeed_zero3_enabled():
# FIXME: after deepspeed initialization, some weights becomes non-zero
# For Mistral, there are rows that are full of zeros
# For Mistral, there are values bigger than 1e29...
import deepspeed
params = [self.up_proj.weight, self.down_proj.weight, self.beacon_up_proj.weight, self.beacon_down_proj.weight]
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
if (self.beacon_up_proj.weight.sum(-1) == 0).any() or (self.beacon_up_proj.weight > 1e29).any():
self.beacon_up_proj.weight.data[:] = self.up_proj.weight.data
self.beacon_down_proj.weight.data[:] = self.down_proj.weight.data
else:
if any("beacon_up_proj" in missing_key for missing_key in missing_keys):
# only copy the value in-place, without tieing the weight
self.beacon_up_proj.weight.data[:] = self.up_proj.weight.data
self.beacon_down_proj.weight.data[:] = self.down_proj.weight.data
def forward(self, x, beacon_size, beacon_indices):
if "mlp" in self.config.beacon_param:
# NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
if beacon_size > 0:
cur_beacon_indices = beacon_indices[-x.shape[1]:]
ordinal_hidden_states = x[:, cur_beacon_indices == 0]
beacon_hidden_states = x[:, cur_beacon_indices == 1]
ordinal_down_proj = self.down_proj(self.act_fn(self.gate_proj(ordinal_hidden_states)) * self.up_proj(ordinal_hidden_states))
beacon_down_proj = self.beacon_down_proj(self.act_fn(self.gate_proj(beacon_hidden_states)) * self.beacon_up_proj(beacon_hidden_states))
down_proj = beacon_down_proj.new_ones(x.shape)
down_proj[:, beacon_indices == 0] = ordinal_down_proj
down_proj[:, beacon_indices == 1] = beacon_down_proj
else:
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
else:
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class Qwen2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self._init_rope()
# NOTE: add extra parameters for beacon tokens
# skip post initialization to speed up loading
if "q" in config.beacon_param:
self.beacon_q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.q_proj.bias is not None)
# NOTE: initialize the beacon parameters as zero
self.beacon_q_proj.weight.data.zero_()
self.beacon_q_proj._is_hf_initialized = True
if "k" in config.beacon_param:
self.beacon_k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.k_proj.bias is not None)
self.beacon_k_proj.weight.data.zero_()
self.beacon_k_proj._is_hf_initialized = True
if "v" in config.beacon_param:
self.beacon_v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.v_proj.bias is not None)
self.beacon_v_proj.weight.data.zero_()
self.beacon_v_proj._is_hf_initialized = True
if "o" in config.beacon_param:
self.beacon_o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=self.o_proj.bias is not None)
self.beacon_o_proj.weight.data.zero_()
self.beacon_o_proj._is_hf_initialized = True
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = Qwen2RotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = Qwen2LinearScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
elif scaling_type == "dynamic":
self.rotary_emb = Qwen2DynamicNTKScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
elif scaling_type == "yarn":
self.rotary_emb = Qwen2YarnRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
elif scaling_type == "yarn-t":
self.rotary_emb = Qwen2YarnDynamicTemperatureRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
elif scaling_type == "yarn-t-logn":
self.rotary_emb = Qwen2YarnDynamicTemperatureLogNRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def _init_beacon_proj(self, missing_keys):
"""Initialize the beacon projection weight with that of the ordinal projection."""
beacon_param = self.config.beacon_param
if is_deepspeed_zero3_enabled():
# FIXME: after deepspeed initialization, some weights becomes non-zero
# For Mistral, there are rows that are full of zeros
# For Mistral, there are values bigger than 1e29...
import deepspeed
if "q" in beacon_param:
params = [self.beacon_q_proj.weight, self.q_proj.weight]
if self.q_proj.bias is not None:
params.extend([self.beacon_q_proj.bias, self.q_proj.bias])
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
if (self.beacon_q_proj.weight.sum(-1) == 0).any() or (self.beacon_q_proj.weight > 1e29).any():
self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data
if self.q_proj.bias is not None:
self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data
if "k" in beacon_param:
params = [self.beacon_k_proj.weight, self.k_proj.weight]
if self.k_proj.bias is not None:
params.extend([self.beacon_k_proj.bias, self.k_proj.bias])
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
if (self.beacon_k_proj.weight.sum(-1) == 0).any() or (self.beacon_k_proj.weight > 1e29).any():
self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data
if self.k_proj.bias is not None:
self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data
if "v" in beacon_param:
params = [self.beacon_v_proj.weight, self.v_proj.weight]
if self.v_proj.bias is not None:
params.extend([self.beacon_v_proj.bias, self.v_proj.bias])
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
if (self.beacon_v_proj.weight.sum(-1) == 0).any() or (self.beacon_v_proj.weight > 1e29).any():
self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data
if self.v_proj.bias is not None:
self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data
if "o" in beacon_param:
params = [self.beacon_o_proj.weight, self.o_proj.weight]
if self.o_proj.bias is not None:
params.extend([self.beacon_o_proj.bias, self.o_proj.bias])
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
if (self.beacon_o_proj.weight.sum(-1) == 0).any() or (self.beacon_o_proj.weight > 1e29).any():
self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data
if self.o_proj.bias is not None:
self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data
else:
# only copy the value in-place, without tieing the weight
if "q" in beacon_param and any("beacon_q_proj" in missing_key for missing_key in missing_keys):
# FIXME: some beacon weights are not initialized as zero for mistral model, why?
# if (self.beacon_q_proj.weight == 0).all():
self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data
if self.q_proj.bias is not None:
self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data
if "k" in beacon_param and any("beacon_k_proj" in missing_key for missing_key in missing_keys):
# if (self.beacon_k_proj.weight == 0).all():
self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data
if self.k_proj.bias is not None:
self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data
if "v" in beacon_param and any("beacon_v_proj" in missing_key for missing_key in missing_keys):
# if (self.beacon_v_proj.weight == 0).all():
self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data
if self.v_proj.bias is not None:
self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data
if "o" in beacon_param and any("beacon_o_proj" in missing_key for missing_key in missing_keys):
# if (self.beacon_o_proj.weight == 0).all():
self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data
if self.o_proj.bias is not None:
self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def qkv_proj_with_beacon(self, hidden_states, beacon_size, beacon_indices):
if beacon_size > 0:
# NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
cur_beacon_indices = beacon_indices[-hidden_states.shape[1]:]
ordinal_hidden_states = hidden_states[:, cur_beacon_indices == 0]
beacon_hidden_states = hidden_states[:, cur_beacon_indices == 1]
if "q" in self.config.beacon_param:
ordinal_query_states = self.q_proj(ordinal_hidden_states)
beacon_query_states = self.beacon_q_proj(beacon_hidden_states)
query_states = beacon_query_states.new_zeros((ordinal_query_states.shape[0], cur_beacon_indices.shape[0], ordinal_query_states.shape[2]))
query_states[:, cur_beacon_indices == 0] = ordinal_query_states
query_states[:, cur_beacon_indices == 1] = beacon_query_states
# NOTE: replicate hidden states for beacon tokens in case of parallel windows
if (cur_beacon_indices == 2).any():
query_states[:, cur_beacon_indices == 2] = beacon_query_states[:, :(cur_beacon_indices == 2).sum()]
else:
query_states = self.q_proj(hidden_states)
if "k" in self.config.beacon_param:
ordinal_key_states = self.k_proj(ordinal_hidden_states)
beacon_key_states = self.beacon_k_proj(beacon_hidden_states)
key_states = beacon_key_states.new_zeros((ordinal_key_states.shape[0], cur_beacon_indices.shape[0], ordinal_key_states.shape[2]))
key_states[:, cur_beacon_indices == 0] = ordinal_key_states
key_states[:, cur_beacon_indices == 1] = beacon_key_states
# NOTE: replicate hidden states for beacon tokens in case of parallel windows
if (cur_beacon_indices == 2).any():
key_states[:, cur_beacon_indices == 2] = beacon_key_states[:, :(cur_beacon_indices == 2).sum()]
else:
key_states = self.k_proj(hidden_states)
if "v" in self.config.beacon_param:
ordinal_value_states = self.v_proj(ordinal_hidden_states)
beacon_value_states = self.beacon_v_proj(beacon_hidden_states)
value_states = beacon_value_states.new_zeros((ordinal_value_states.shape[0], cur_beacon_indices.shape[0], ordinal_value_states.shape[2]))
value_states[:, cur_beacon_indices == 0] = ordinal_value_states
value_states[:, cur_beacon_indices == 1] = beacon_value_states
# NOTE: replicate hidden states for beacon tokens in case of parallel windows
if (cur_beacon_indices == 2).any():
value_states[:, cur_beacon_indices == 2] = beacon_value_states[:, :(cur_beacon_indices == 2).sum()]
else:
value_states = self.v_proj(hidden_states)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
return query_states, key_states, value_states
def o_proj_with_beacon(self, attn_output, beacon_size, beacon_indices):
if beacon_size > 0:
# NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
cur_beacon_indices = beacon_indices[-attn_output.shape[1]:]
if "o" in self.config.beacon_param:
ordinal_attn_output = self.o_proj(attn_output[:, cur_beacon_indices == 0])
beacon_attn_output = self.beacon_o_proj(attn_output[:, cur_beacon_indices == 1])
attn_output = beacon_attn_output.new_zeros(attn_output.shape)
attn_output[:, cur_beacon_indices == 0] = ordinal_attn_output
attn_output[:, cur_beacon_indices == 1] = beacon_attn_output
# NOTE: replicate hidden states for beacon tokens in case of parallel windows
# if (cur_beacon_indices == 2).any():
# attn_output[:, cur_beacon_indices == 2] = beacon_attn_output[:, :(cur_beacon_indices == 2).sum()]
else:
attn_output = self.o_proj(attn_output)
else:
attn_output = self.o_proj(attn_output)
return attn_output
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
kv_seq_len = hidden_states.shape[-2]
past_key, past_value, beacon_size, beacon_indices = past_key_value
if past_key is not None:
past_seq_len = past_key.shape[2]
kv_seq_len += past_seq_len
else:
past_seq_len = 0
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# return keys and values before rope
# NOTE: incrementally return keys and values for efficiency
past_key_value = (key_states, value_states, beacon_size, beacon_indices)
if past_key is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key, key_states], dim=2)
value_states = torch.cat([past_value, value_states], dim=2)
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class Qwen2SdpaAttention(Qwen2Attention):
"""
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from Qwen2Attention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
bsz, q_len, _ = hidden_states.size()
kv_seq_len = hidden_states.shape[-2]
past_key, past_value, beacon_size, beacon_indices = past_key_value
if past_key is not None:
past_seq_len = past_key.shape[2]
kv_seq_len += past_seq_len
else:
past_seq_len = 0
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# return keys and values before rope
# NOTE: incrementally return keys and values for efficiency
past_key_value = (key_states, value_states, beacon_size, beacon_indices)
if past_key is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key, key_states], dim=2)
value_states = torch.cat([past_value, value_states], dim=2)
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal=self.is_causal and attention_mask is None and q_len > 1,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
return attn_output, None, past_key_value
class Qwen2FlashAttention2(Qwen2Attention):
"""
Qwen2 flash attention module. This module inherits from `Qwen2Attention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
output_attentions = False
bsz, q_len, _ = hidden_states.size()
kv_seq_len = hidden_states.shape[-2]
past_key, past_value, beacon_size, beacon_indices = past_key_value
if past_key is not None:
past_seq_len = past_key.shape[2]
kv_seq_len += past_seq_len
else:
past_seq_len = 0
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# return keys and values before rope
# NOTE: incrementally return keys and values for efficiency
past_key_value = (key_states, value_states, beacon_size, beacon_indices)
if past_key is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key, key_states], dim=2)
value_states = torch.cat([past_value, value_states], dim=2)
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
# FlashAttention will automatically handle grouped query attention
# key_states = repeat_kv(key_states, self.num_key_value_groups)
# value_states = repeat_kv(value_states, self.num_key_value_groups)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (Qwen2RMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _flash_attention_forward(
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`float`):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in Qwen2FlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
)
return attn_output
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
QWEN2_ATTENTION_CLASSES = {
"eager": Qwen2Attention,
"sdpa": Qwen2SdpaAttention,
"flash_attention_2": Qwen2FlashAttention2,
}
class Qwen2DecoderLayer(nn.Module):
def __init__(self, config: Qwen2Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
logger.warning_once(
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
"unexpected results may be encountered."
)
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
self.mlp = Qwen2MLP(config)
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
"Please make sure use `attention_mask` instead.`"
)
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
# NOTE: get beacon_size in case the mlp is included in beacon_param
past_key, past_value, beacon_size, beacon_indices = past_key_value
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
###add
# attention_mask = attention_mask.float()
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states, beacon_size, beacon_indices)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
QWEN2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Qwen2Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
QWEN2_START_DOCSTRING,
)
class Qwen2PreTrainedModel(PreTrainedModel):
config_class = Qwen2Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Qwen2DecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
QWEN2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance;
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
QWEN2_START_DOCSTRING,
)
class Qwen2Model(Qwen2PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
Args:
config: Qwen2Config
"""
def __init__(self, config: Qwen2Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size #152064
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
# BEACON: add beacon embedding
self.beacon_embed_tokens = nn.Embedding(1, config.hidden_size, self.padding_idx)
self.beacon_embed_tokens._is_hf_initialized = True
self.layers = nn.ModuleList(
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self._attn_implementation = config._attn_implementation
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
self.image_idx=0
def _init_beacon_embed(self, missing_keys):
"""Initialize the beacon token embedding with that of the eos token."""
if is_deepspeed_zero3_enabled():
import deepspeed
params = [self.beacon_embed_tokens.weight, self.embed_tokens.weight]
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
# deepspeed will initialize the parameters to zero
if (self.beacon_embed_tokens.weight == 0).all():
if self.config.beacon_embed_init == "bos":
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id]
elif self.config.beacon_embed_init == "eos":
if isinstance(self.config.eos_token_id, list):
eos_token_id = self.config.eos_token_id[0]
else:
eos_token_id = self.config.eos_token_id
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id]
else:
raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}")
else:
if any("beacon_embed_tokens" in missing_key for missing_key in missing_keys):
if self.config.beacon_embed_init == "bos":
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id]
elif self.config.beacon_embed_init == "eos":
if isinstance(self.config.eos_token_id, list):
eos_token_id = self.config.eos_token_id[0]
else:
eos_token_id = self.config.eos_token_id
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id]
else:
raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}")
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
image_features:Optional[torch.Tensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# BEACON: always use cache
use_cache = True
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
past_key, past_value, beacon_size, beacon_indices = past_key_values[0]
# BEACON: separately embed ordinal tokens and beacon tokens because ordinal tokens do not receive gradients
if beacon_size > 0:
# NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
# special_token = self.config.vocab_size -1
# cur_beacon_indices = beacon_indices[-input_ids.shape[1]:]
# ordinal_input_ids = input_ids[:, cur_beacon_indices == 0] # image indices
# beacon_input_ids = input_ids[:, cur_beacon_indices > 0] # beacon indices
# beacon_input_embeds = self.beacon_embed_tokens(beacon_input_ids - self.config.vocab_size)
# # create a new embedding tensor
# inputs_embeds = beacon_input_embeds.new_zeros(*input_ids.shape, beacon_input_embeds.shape[-1])
# inputs_embeds[:, cur_beacon_indices > 0] = beacon_input_embeds
# # 计算 batch_size 和 seq_len
# batch_size, seq_len = input_ids.shape
# adjusted_image_idx=0
# for batch_idx in range(batch_size):
# for seq_idx in range(seq_len):
# if input_ids[batch_idx, seq_idx] == special_token:
# # print("idx",self.image_idx+adjusted_image_idx)
# # print("11",image_features[self.image_idx+adjusted_image_idx].shape)
# # print("11",seq_idx,self.image_idx+adjusted_image_idx)
# inputs_embeds[batch_idx, seq_idx] = image_features[self.image_idx+adjusted_image_idx]
# adjusted_image_idx+=1
# count = (input_ids == special_token).sum().item()
# self.image_idx += count
# if self.image_idx==image_features.shape[0]:
# self.image_idx=0
cur_beacon_indices = beacon_indices[-input_ids.shape[1]:]
beacon_input_ids = input_ids[:, cur_beacon_indices > 0]
# print("input_ids",input_ids)
special_token = self.config.vocab_size -1
inputs_embeds = torch.zeros(*input_ids.shape, image_features.shape[-1], device=input_ids.device, dtype=image_features.dtype)
batch_size, seq_len = input_ids.shape
adjusted_image_idx=0
for batch_idx in range(batch_size):
for seq_idx in range(seq_len):
if input_ids[batch_idx, seq_idx] == special_token:
# print("idx",self.image_idx+adjusted_image_idx)
# print("11",image_features.shape)
#print(self.image_idx)
#exit(0)
# print("11",seq_idx,self.image_idx+adjusted_image_idx)
# print("image",image_features[self.image_idx+adjusted_image_idx].shape) # 3584
inputs_embeds[batch_idx, seq_idx] = image_features[self.image_idx+adjusted_image_idx]
adjusted_image_idx+=1
count = (input_ids == special_token).sum().item()
self.image_idx += count
if self.image_idx==image_features.shape[0]:
#print('******************')
self.image_idx=0
# 对 beacon_input_ids 进行嵌入
beacon_input_embeds = self.beacon_embed_tokens(beacon_input_ids - self.config.vocab_size)
# print("beacon",beacon_input_embeds.shape, adjusted_image_idx)
inputs_embeds[:, cur_beacon_indices > 0] = beacon_input_embeds
else:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
hidden_states = inputs_embeds
# print("------------------------------------")
# print("inputs_embeds",inputs_embeds.shape)
# print(f"input_ids: {input_ids}")
# print(f"beacon_indices: {beacon_indices}")
# print(f"position_ids: {position_ids}")
# # print(f"attention_mask:\n{attention_mask == 0}")
# print("------------------------------------")
# x = input()
# if x == "s":
# return
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
# BEACON: still use tuple to organize cache
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
cur_beacon_indices = beacon_indices[-hidden_states.shape[1]:]
ordinal_hidden_states = hidden_states[:, cur_beacon_indices == 0]
beacon_hidden_states = hidden_states[:, cur_beacon_indices == 1]
# BEACON: slice out the past_key_value of the corresponding layer
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_value,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class LlavaQwenConfig(Qwen2Config):
model_type = "llava_qwen"
class LlavaQwenModel(LlavaMetaModel, Qwen2Model):
config_class = LlavaQwenConfig
def __init__(self, config: Qwen2Config):
super(LlavaQwenModel, self).__init__(config)
class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
config_class = LlavaQwenConfig
def __init__(self, config):
# super(Qwen2ForCausalLM, self).__init__(config)
Qwen2ForCausalLM.__init__(self, config)
config.model_type = "llava_qwen"
config.rope_scaling = None
self.model = LlavaQwenModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def get_model(self):
return self.model
@classmethod
def from_pretrained(cls, *args, **kwargs):
"""Override the default from_pretrained to extend vocab size according to beacon_size."""
kwargs.update(output_loading_info=True)
model, loading_info = super().from_pretrained(*args, **kwargs)
# NOTE: set memory after from_pretrained because there may be another transformer model inside the Memory object, which may cause weird erros during loading
config = model.config
model.memory = Memory(
model_config=config,
k_seq_dim=2,
v_seq_dim=2,
)
missing_keys = loading_info["missing_keys"]
# NOTE: the beacon parameters may or may not be loaded from the checkpoint
# if it is loaded from the checkpoint, we should not re-initilize it
model.model._init_beacon_embed(missing_keys)
# initialize weights of possible q,k,v,o,mlp
for layer in model.model.layers:
layer.self_attn._init_beacon_proj(missing_keys)
layer.mlp._init_beacon_proj(missing_keys)
return model
def _native_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
shift_labels: Optional[bool] = True,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
image_features: Optional[torch.Tensor] = None,
) -> Union[Tuple, BeaconModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# when we directly call _native_forward, the past_key_values would be None
if past_key_values is None:
# NOTE: set beacon size to 0 to avoid using any beacon parameters, see Qwen2Attention.forward
past_key_values = [(None, None, 0, None) for _ in range(self.config.num_hidden_layers)]
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
#print('native: input_ids: ',input_ids.shape,'image_features ',image_features.shape)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
image_features=image_features
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
batch_loss = None
valid_token_num = None
# print("labels",labels)
if labels is not None:
loss, batch_loss, valid_token_num = compute_loss(logits, labels, shift=shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return BeaconModelOutput(
loss=loss,
batch_loss=batch_loss,
valid_token_num=valid_token_num,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def _beacon_forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
beacon_skip_first: Optional[int] = None,
beacon_skip_last: Optional[int] = None,
image_features:Optional[torch.Tensor] = None
):
# t1 = time.time()
# initialize cache
# self.memory.prepare(
# input_ids=input_ids,
# attention_mask=attention_mask,
# labels=labels
# )
self.memory.prepare(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
skip_first=beacon_skip_first,
skip_last=beacon_skip_last,
)
# t2 = time.time()
# after the first window, one token at a time
while not self.memory.finish:
# t3 = time.time()
input_ids, attention_mask, position_ids, past_key_values, labels = self.memory.step()
# t4 = time.time()
# print("step_input",input_ids)
outputs = self._native_forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
# NOTE: the labels have been shifted so that all tokens in the window have the proper loss
shift_labels=False,
image_features=image_features
)
# t5 = time.time()
# update past_key_values
self.memory.update_memory(outputs.past_key_values)
# t6 = time.time()
if labels is not None:
# update loss
self.memory.update_loss(outputs.batch_loss, outputs.valid_token_num)
# t7 = time.time()
# print(f"step time: {t4-t3}, forward time: {t5-t4}, update time: {t6-t5}, loss time: {t7-t6}")
# input()
# t8 = time.time()
# output loss, past_key_values, and perplexity
outputs = self.memory.output(outputs)
# t9 = time.time()
# print(f"output time: {t9-t8}")
# input()
return outputs
def forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
image_sizes: Optional[List[List[int]]] = None,
image_features: Optional[torch.FloatTensor] = None,
beacon_skip_first: Optional[int] = None,
beacon_skip_last: Optional[int] = None,
return_dict: Optional[bool] = None,
modalities: Optional[List[str]] = ["image"],
dpo_forward: Optional[bool] = False,
cache_position=None,
) -> Union[Tuple, CausalLMOutputWithPast]:
if image_features is None:
if input_ids.shape[1] != 1:
#print(images.shape,end='*****')
#exit(0)
image_features=self.get_image_features(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes)[0]
# print("image_features",image_features.shape)
num_tokens=image_features.shape[0]
# print("#####",input_ids.shape,input_ids)
# print("@@@@@@",num_tokens)
if -200 in input_ids:
start_value = -200
if num_tokens !=0:
insert_index = (input_ids == start_value).nonzero(as_tuple=True)[1][0].item()
negative_tokens = torch.arange(start_value, start_value - num_tokens, -1, device=input_ids.device)
if labels !=None:
ignore_labels = torch.full((1, num_tokens), -100, device=labels.device, dtype=labels.dtype)
before_labels = labels[:, :insert_index]
after_labels = labels[:, insert_index + 1:]
labels = torch.cat((before_labels, ignore_labels, after_labels), dim=1)
before_input_ids = input_ids[:, :insert_index]
after_input_ids = input_ids[:, insert_index + 1:]
input_ids = torch.cat((before_input_ids, negative_tokens.unsqueeze(0), after_input_ids), dim=1)
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
input_ids[input_ids < 0] = self.config.vocab_size-1
#print("new_input_id",input_ids.shape)
# print("new_labels",labels)
# count = (input_ids == 152063).sum().item()
# print("num_tokens",num_tokens,count)
#if beacon_skip_first is None:
beacon_skip_first=14
beacon_skip_last=beacon_skip_first + num_tokens
with optional_grad_ctx(with_grad=self.training):
# we can disable beacon to use the original mistral
if hasattr(self, "_enable_beacon") and self._enable_beacon == False:
return self._native_forward(input_ids,
attention_mask,
position_ids,
past_key_values,
inputs_embeds,
labels,
use_cache,
output_attentions,
output_hidden_states,
return_dict)
else:
# print("################")
return self._beacon_forward(input_ids,
attention_mask,
position_ids,
past_key_values,
inputs_embeds,
labels,
use_cache,
output_attentions,
output_hidden_states,
return_dict,
beacon_skip_first,
beacon_skip_last,
image_features)
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
modalities: Optional[List[str]] = ["image"],
beacon_skip_first: Optional[int] = None,
beacon_skip_last: Optional[int] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if images is not None:
image_features=self.get_image_features(inputs, position_ids, attention_mask, None, None, images, modalities, image_sizes)
image_features=torch.stack(image_features).squeeze(0)
kwargs["image_features"] = image_features
else:
inputs_embeds = self.get_model().embed_tokens(inputs)
# return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs)
# print("generate_id",inputs,image_features.shape)
num_tokens=image_features.shape[0]
beacon_skip_first = (inputs == -200).nonzero(as_tuple=True)[1].item()
# if beacon_skip_first is None:
# beacon_skip_first = (inputs == -200).nonzero(as_tuple=True)[1].item()
if beacon_skip_last==None:
beacon_skip_last = beacon_skip_first + num_tokens
if -200 in inputs:
start_value = -200
input_ids=inputs
if num_tokens !=0:
insert_index = (input_ids == start_value).nonzero(as_tuple=True)[1][0].item()
negative_tokens = torch.arange(start_value, start_value - num_tokens, -1, device=input_ids.device)
before_input_ids = input_ids[:, :insert_index]
after_input_ids = input_ids[:, insert_index + 1:]
input_ids = torch.cat((before_input_ids, negative_tokens.unsqueeze(0), after_input_ids), dim=1)
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
input_ids[input_ids < 0] = self.config.vocab_size-1
inputs=input_ids
# print("new_input_id",inputs)
return super().generate(position_ids=position_ids, attention_mask=attention_mask,inputs=inputs,beacon_skip_first=beacon_skip_first, beacon_skip_last= beacon_skip_last, **kwargs)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, beacon_skip_first=None, beacon_skip_last=None, **kwargs):
if past_key_values:
input_ids = input_ids[:, -1:]
# print("prepare_ids",input_ids)
model_inputs = {"input_ids": input_ids}
model_inputs["beacon_skip_first"]=beacon_skip_first
model_inputs["beacon_skip_last"]=beacon_skip_last
if 'image_features' in kwargs:
model_inputs["image_features"] = kwargs['image_features']
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
AutoConfig.register("llava_qwen", LlavaQwenConfig)
AutoModelForCausalLM.register(LlavaQwenConfig, LlavaQwenForCausalLM)
|