Add file to support AutoConfig (#2)
Browse files- Upload configration_videoxlpro_llavaqwen.py and modeling_videoxlpro_llavaqwen.py to support AutoModel load. (be892512452c30641890ea9bec81612ba605e441)
Co-authored-by: 锅中冰 <[email protected]>
- config.json +5 -1
- configuration_videoxlpro_llavaqwen.py +157 -0
- modeling_videoxlpro_llavaqwen.py +0 -0
config.json
CHANGED
@@ -3,6 +3,10 @@
|
|
3 |
"architectures": [
|
4 |
"LlavaQwenForCausalLM"
|
5 |
],
|
|
|
|
|
|
|
|
|
6 |
"attention_dropout": 0.0,
|
7 |
"beacon_accum": true,
|
8 |
"beacon_attend_prev": true,
|
@@ -854,7 +858,7 @@
|
|
854 |
"mm_vision_select_layer": -1,
|
855 |
"mm_vision_tower": "/share/LXRlxr0_0/code/videoxlturbo2.0/videoxl_adaptfps/google/siglip-so400m-patch14-384",
|
856 |
"mm_vision_tower_lr": null,
|
857 |
-
"model_type": "
|
858 |
"num_attention_heads": 16,
|
859 |
"num_hidden_layers": 36,
|
860 |
"num_key_value_heads": 2,
|
|
|
3 |
"architectures": [
|
4 |
"LlavaQwenForCausalLM"
|
5 |
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_videoxlpro_llavaqwen.LlavaQwenConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_videoxlpro_llavaqwen.LlavaQwenForCausalLM"
|
9 |
+
},
|
10 |
"attention_dropout": 0.0,
|
11 |
"beacon_accum": true,
|
12 |
"beacon_attend_prev": true,
|
|
|
858 |
"mm_vision_select_layer": -1,
|
859 |
"mm_vision_tower": "/share/LXRlxr0_0/code/videoxlturbo2.0/videoxl_adaptfps/google/siglip-so400m-patch14-384",
|
860 |
"mm_vision_tower_lr": null,
|
861 |
+
"model_type": "videoxlpro_llavaqwen",
|
862 |
"num_attention_heads": 16,
|
863 |
"num_hidden_layers": 36,
|
864 |
"num_key_value_heads": 2,
|
configuration_videoxlpro_llavaqwen.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
|
4 |
+
|
5 |
+
logger = logging.get_logger(__name__)
|
6 |
+
|
7 |
+
QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
8 |
+
"Qwen/Qwen2-7B-beta": "https://huggingface.co/Qwen/Qwen2-7B-beta/resolve/main/config.json",
|
9 |
+
}
|
10 |
+
|
11 |
+
|
12 |
+
class Qwen2Config(PretrainedConfig):
|
13 |
+
r"""
|
14 |
+
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
|
15 |
+
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
16 |
+
with the defaults will yield a similar configuration to that of
|
17 |
+
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
18 |
+
|
19 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
20 |
+
documentation from [`PretrainedConfig`] for more information.
|
21 |
+
|
22 |
+
|
23 |
+
Args:
|
24 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
25 |
+
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
|
26 |
+
`inputs_ids` passed when calling [`Qwen2Model`]
|
27 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
28 |
+
Dimension of the hidden representations.
|
29 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
30 |
+
Dimension of the MLP representations.
|
31 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
32 |
+
Number of hidden layers in the Transformer encoder.
|
33 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
34 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
35 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
36 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
37 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
38 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
39 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
40 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
41 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
42 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
43 |
+
The non-linear activation function (function or string) in the decoder.
|
44 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
45 |
+
The maximum sequence length that this model might ever be used with.
|
46 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
47 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
48 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
49 |
+
The epsilon used by the rms normalization layers.
|
50 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
51 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
52 |
+
relevant if `config.is_decoder=True`.
|
53 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
54 |
+
Whether the model's input and output word embeddings should be tied.
|
55 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
56 |
+
The base period of the RoPE embeddings.
|
57 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
58 |
+
Whether to use sliding window attention.
|
59 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
60 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
61 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
62 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
63 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio for the attention probabilities.
|
65 |
+
|
66 |
+
```python
|
67 |
+
>>> from transformers import Qwen2Model, Qwen2Config
|
68 |
+
|
69 |
+
>>> # Initializing a Qwen2 style configuration
|
70 |
+
>>> configuration = Qwen2Config()
|
71 |
+
|
72 |
+
>>> # Initializing a model from the Qwen2-7B style configuration
|
73 |
+
>>> model = Qwen2Model(configuration)
|
74 |
+
|
75 |
+
>>> # Accessing the model configuration
|
76 |
+
>>> configuration = model.config
|
77 |
+
```"""
|
78 |
+
|
79 |
+
model_type = "qwen2"
|
80 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
vocab_size=151936,
|
85 |
+
hidden_size=4096,
|
86 |
+
intermediate_size=22016,
|
87 |
+
num_hidden_layers=32,
|
88 |
+
num_attention_heads=32,
|
89 |
+
num_key_value_heads=32,
|
90 |
+
hidden_act="silu",
|
91 |
+
max_position_embeddings=32768,
|
92 |
+
initializer_range=0.02,
|
93 |
+
rms_norm_eps=1e-6,
|
94 |
+
use_cache=True,
|
95 |
+
tie_word_embeddings=False,
|
96 |
+
rope_theta=10000.0,
|
97 |
+
use_sliding_window=False,
|
98 |
+
sliding_window=4096,
|
99 |
+
rope_scaling=None,
|
100 |
+
max_window_layers=28,
|
101 |
+
attention_dropout=0.0,
|
102 |
+
beacon_window=1024,
|
103 |
+
beacon_stride=1024,
|
104 |
+
beacon_attn="full-coverage",
|
105 |
+
beacon_ratio=[2,4,8,16,32],
|
106 |
+
beacon_ratio_mix="step-random",
|
107 |
+
beacon_param=[],
|
108 |
+
beacon_embed_init="eos",
|
109 |
+
beacon_sink_size=0,
|
110 |
+
beacon_attend_prev=True,
|
111 |
+
beacon_pos="interleave",
|
112 |
+
beacon_parallel_window=1,
|
113 |
+
**kwargs,
|
114 |
+
):
|
115 |
+
self.vocab_size = vocab_size
|
116 |
+
self.max_position_embeddings = max_position_embeddings
|
117 |
+
self.hidden_size = hidden_size
|
118 |
+
self.intermediate_size = intermediate_size
|
119 |
+
self.num_hidden_layers = num_hidden_layers
|
120 |
+
self.num_attention_heads = num_attention_heads
|
121 |
+
self.use_sliding_window = use_sliding_window
|
122 |
+
self.sliding_window = sliding_window
|
123 |
+
self.max_window_layers = max_window_layers
|
124 |
+
self.rope_scaling = rope_scaling
|
125 |
+
|
126 |
+
# for backward compatibility
|
127 |
+
if num_key_value_heads is None:
|
128 |
+
num_key_value_heads = num_attention_heads
|
129 |
+
|
130 |
+
self.num_key_value_heads = num_key_value_heads
|
131 |
+
self.hidden_act = hidden_act
|
132 |
+
self.initializer_range = initializer_range
|
133 |
+
self.rms_norm_eps = rms_norm_eps
|
134 |
+
self.use_cache = use_cache
|
135 |
+
self.rope_theta = rope_theta
|
136 |
+
self.attention_dropout = attention_dropout
|
137 |
+
|
138 |
+
self.beacon_window = beacon_window
|
139 |
+
self.beacon_stride = beacon_stride
|
140 |
+
self.beacon_attn = beacon_attn
|
141 |
+
self.beacon_ratio = beacon_ratio
|
142 |
+
self.beacon_ratio_mix = beacon_ratio_mix
|
143 |
+
self.beacon_param = beacon_param
|
144 |
+
self.beacon_embed_init = beacon_embed_init
|
145 |
+
self.beacon_sink_size = beacon_sink_size
|
146 |
+
self.beacon_attend_prev = beacon_attend_prev
|
147 |
+
self.beacon_pos = beacon_pos
|
148 |
+
self.beacon_parallel_window = beacon_parallel_window
|
149 |
+
|
150 |
+
super().__init__(
|
151 |
+
tie_word_embeddings=tie_word_embeddings,
|
152 |
+
**kwargs,
|
153 |
+
)
|
154 |
+
|
155 |
+
|
156 |
+
class LlavaQwenConfig(Qwen2Config):
|
157 |
+
model_type = "videoxlpro_llavaqwen"
|
modeling_videoxlpro_llavaqwen.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|