Update README.md
#2
by
Idphilosea
- opened
README.md
CHANGED
@@ -1,74 +1,73 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
# Model Card for RoboFAC-7B
|
9 |
-
[]() [](https://arxiv.org/abs/2505.12224) [](https://huggingface.co/datasets/MINT-SJTU/RoboFAC-dataset) [](https://huggingface.co/MINT-SJTU/RoboFAC-7B)
|
10 |
-
RoboFAC-7B is a large-scale vision-language model specifically finetuned for **robotic failure understanding and correction**. It takes in visual observations of robot executions (usually video frames) and outputs detailed answers to questions that analyze, diagnose, and propose corrections for robotic manipulation failures.
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
* **Developed by:** [MINT Lab, Shanghai Jiao Tong University](https://mint-sjtu.github.io/)
|
17 |
-
* **Model type:** Vision-Language Model (VLM) for robotic failure analysis
|
18 |
-
* **Languages:** English (instruction-tuned for robotic QA)
|
19 |
-
* **License:** Apache 2.0
|
20 |
-
* **Finetuned from model:** Qwen/Qwen2.5-VL-7B-Instruct
|
21 |
-
|
22 |
-
|
23 |
-
---
|
24 |
-
|
25 |
-
## Uses
|
26 |
-
|
27 |
-
### Direct Use
|
28 |
-
|
29 |
-
The model is intended to be used in robotic systems as an *external critic*, to:
|
30 |
-
|
31 |
-
* Perform **task understanding** by answering what the robot is doing.
|
32 |
-
* Conduct **failure diagnosis** by identifying where and why it failed.
|
33 |
-
* Generate **correction suggestions** based on visual observations.
|
34 |
-
|
35 |
-
### Downstream Use
|
36 |
-
|
37 |
-
The model can be integrated into:
|
38 |
-
|
39 |
-
* Vision-language control pipelines (e.g., VLA systems)
|
40 |
-
* Robotic operation monitoring tools
|
41 |
-
* Training agents with self-improvement capabilities
|
42 |
-
---
|
43 |
-
|
44 |
-
## Quickstart
|
45 |
-
|
46 |
-
```python
|
47 |
-
from transformers import AutoProcessor, AutoModelForVision2Seq
|
48 |
-
|
49 |
-
model = AutoModelForVision2Seq.from_pretrained("MINT-SJTU/RoboFAC-7B")
|
50 |
-
processor = AutoProcessor.from_pretrained("MINT-SJTU/RoboFAC-7B")
|
51 |
-
|
52 |
-
# Example usage with image frames and a question
|
53 |
-
inputs = processor(images=[...], text="Why did the robot fail?", return_tensors="pt").to("cuda")
|
54 |
-
outputs = model.generate(**inputs)
|
55 |
-
print(processor.batch_decode(outputs, skip_special_tokens=True))
|
56 |
-
```
|
57 |
-
|
58 |
-
|
59 |
-
## Citation
|
60 |
-
|
61 |
-
**BibTeX:**
|
62 |
-
|
63 |
-
```bibtex
|
64 |
-
@misc{lu2025robofaccomprehensiveframeworkrobotic,
|
65 |
-
title={RoboFAC: A Comprehensive Framework for Robotic Failure Analysis and Correction},
|
66 |
-
author={Weifeng Lu and Minghao Ye and Zewei Ye and Ruihan Tao and Shuo Yang and Bo Zhao},
|
67 |
-
year={2025},
|
68 |
-
eprint={2505.12224},
|
69 |
-
archivePrefix={arXiv},
|
70 |
-
primaryClass={cs.RO},
|
71 |
-
url={https://arxiv.org/abs/2505.12224}
|
72 |
-
}
|
73 |
-
```
|
74 |
-
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- MINT-SJTU/RoboFAC-dataset
|
4 |
+
base_model:
|
5 |
+
- Qwen/Qwen2.5-VL-7B-Instruct
|
6 |
+
---
|
7 |
+
|
8 |
+
# Model Card for RoboFAC-7B
|
9 |
+
[]() [](https://arxiv.org/abs/2505.12224) [](https://huggingface.co/datasets/MINT-SJTU/RoboFAC-dataset) [](https://huggingface.co/MINT-SJTU/RoboFAC-7B)
|
10 |
+
RoboFAC-7B is a large-scale vision-language model specifically finetuned for **robotic failure understanding and correction**. It takes in visual observations of robot executions (usually video frames) and outputs detailed answers to questions that analyze, diagnose, and propose corrections for robotic manipulation failures.
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
* **Developed by:** [MINT Lab, Shanghai Jiao Tong University](https://mint-sjtu.github.io/)
|
17 |
+
* **Model type:** Vision-Language Model (VLM) for robotic failure analysis
|
18 |
+
* **Languages:** English (instruction-tuned for robotic QA)
|
19 |
+
* **License:** Apache 2.0
|
20 |
+
* **Finetuned from model:** Qwen/Qwen2.5-VL-7B-Instruct
|
21 |
+
|
22 |
+
|
23 |
+
---
|
24 |
+
|
25 |
+
## Uses
|
26 |
+
|
27 |
+
### Direct Use
|
28 |
+
|
29 |
+
The model is intended to be used in robotic systems as an *external critic*, to:
|
30 |
+
|
31 |
+
* Perform **task understanding** by answering what the robot is doing.
|
32 |
+
* Conduct **failure diagnosis** by identifying where and why it failed.
|
33 |
+
* Generate **correction suggestions** based on visual observations.
|
34 |
+
|
35 |
+
### Downstream Use
|
36 |
+
|
37 |
+
The model can be integrated into:
|
38 |
+
|
39 |
+
* Vision-language control pipelines (e.g., VLA systems)
|
40 |
+
* Robotic operation monitoring tools
|
41 |
+
* Training agents with self-improvement capabilities
|
42 |
+
---
|
43 |
+
|
44 |
+
## Quickstart
|
45 |
+
|
46 |
+
```python
|
47 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
48 |
+
|
49 |
+
model = AutoModelForVision2Seq.from_pretrained("MINT-SJTU/RoboFAC-7B")
|
50 |
+
processor = AutoProcessor.from_pretrained("MINT-SJTU/RoboFAC-7B")
|
51 |
+
|
52 |
+
# Example usage with image frames and a question
|
53 |
+
inputs = processor(images=[...], text="Why did the robot fail?", return_tensors="pt").to("cuda")
|
54 |
+
outputs = model.generate(**inputs)
|
55 |
+
print(processor.batch_decode(outputs, skip_special_tokens=True))
|
56 |
+
```
|
57 |
+
|
58 |
+
|
59 |
+
## Citation
|
60 |
+
|
61 |
+
**BibTeX:**
|
62 |
+
|
63 |
+
```bibtex
|
64 |
+
@misc{lu2025robofaccomprehensiveframeworkrobotic,
|
65 |
+
title={RoboFAC: A Comprehensive Framework for Robotic Failure Analysis and Correction},
|
66 |
+
author={Weifeng Lu and Minghao Ye and Zewei Ye and Ruihan Tao and Shuo Yang and Bo Zhao},
|
67 |
+
year={2025},
|
68 |
+
eprint={2505.12224},
|
69 |
+
archivePrefix={arXiv},
|
70 |
+
primaryClass={cs.RO},
|
71 |
+
url={https://arxiv.org/abs/2505.12224}
|
72 |
+
}
|
73 |
+
```
|
|