metadata
language:
- en
library_name: transformers
license: mit
license_link: >-
https://huggingface.co/microsoft/Phi-4-mini-instruct-reasoning/resolve/main/LICENSE
pipeline_tag: text-generation
tags:
- nlp
- math
- code
- mlx
- mlx-my-repo
widget:
- messages:
- role: user
content: How to solve 3*x^2+4*x+5=1?
base_model: microsoft/Phi-4-mini-reasoning
MCES10-Software/Phi-4-mini-reasoning-mlx-fp16
The Model MCES10-Software/Phi-4-mini-reasoning-mlx-fp16 was converted to MLX format from microsoft/Phi-4-mini-reasoning using mlx-lm version 0.22.3.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("MCES10-Software/Phi-4-mini-reasoning-mlx-fp16")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)