M-Oussama's picture
Model save
55d9d60 verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: tweet_sentiment_analysis_clean_tweet
    results: []

tweet_sentiment_analysis_clean_tweet

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4886
  • Accuracy: 0.8081
  • F1: 0.8073
  • Recall: 0.8037
  • Precision: 0.8110

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.4077 1.0 20000 0.4019 0.8153 0.8177 0.8281 0.8076
0.3382 2.0 40000 0.4175 0.8148 0.8133 0.8063 0.8204
0.2948 3.0 60000 0.4528 0.8107 0.8129 0.8220 0.8041
0.2541 4.0 80000 0.4886 0.8081 0.8073 0.8037 0.8110

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0