
LFM2-1.2B
LFM2 is a new generation of hybrid models developed by Liquid AI, specifically designed for edge AI and on-device deployment. It sets a new standard in terms of quality, speed, and memory efficiency.
We're releasing the weights of three post-trained checkpoints with 350M, 700M, and 1.2B parameters. They provide the following key features to create AI-powered edge applications:
- Fast training & inference β LFM2 achieves 3x faster training compared to its previous generation. It also benefits from 2x faster decode and prefill speed on CPU compared to Qwen3.
- Best performance β LFM2 outperforms similarly-sized models across multiple benchmark categories, including knowledge, mathematics, instruction following, and multilingual capabilities.
- New architecture β LFM2 is a new hybrid Liquid model with multiplicative gates and short convolutions.
- Flexible deployment β LFM2 runs efficiently on CPU, GPU, and NPU hardware for flexible deployment on smartphones, laptops, or vehicles.
Find more information about LFM2 in our blog post.
π Model details
Due to their small size, we recommend fine-tuning LFM2 models on narrow use cases to maximize performance. They are particularly suited for agentic tasks, data extraction, RAG, creative writing, and multi-turn conversations. However, we do not recommend using them for tasks that are knowledge-intensive or require programming skills.
Property | Value |
---|---|
Parameters | 1,170,340,608 |
Layers | 16 (10 conv + 6 attn) |
Context length | 32,768 tokens |
Vocabulary size | 65,536 |
Precision | bfloat16 |
Training budget | 10 trillion tokens |
License | LFM Open License v1.0 |
Supported languages: English, Arabic, Chinese, French, German, Japanese, Korean, and Spanish.
Generation parameters: We recommend the following parameters:
temperature=0.3
min_p=0.15
repetition_penalty=1.05
Chat template: LFM2 uses a ChatML-like chat template as follows:
<|startoftext|><|im_start|>system
You are a helpful assistant trained by Liquid AI.<|im_end|>
<|im_start|>user
What is C. elegans?<|im_end|>
<|im_start|>assistant
It's a tiny nematode that lives in temperate soil environments.<|im_end|>
You can apply it using the dedicated .apply_chat_template()
function from Hugging Face transformers.
Tool use: It consists of four main steps:
- Function definition: LFM2 takes JSON function definitions as input (JSON objects between
<|tool_list_start|>
and<|tool_list_end|>
special tokens), usually in the system prompt - Function call: LFM2 writes Pythonic function calls (a Python list between
<|tool_call_start|>
and<|tool_call_end|>
special tokens), as the assistant answer. - Function execution: The function call is executed and the result is returned (string between
<|tool_response_start|>
and<|tool_response_end|>
special tokens), as a "tool" role. - Final answer: LFM2 interprets the outcome of the function call to address the original user prompt in plain text.
Here is a simple example of a conversation using tool use:
<|startoftext|><|im_start|>system
List of tools: <|tool_list_start|>[{"name": "get_candidate_status", "description": "Retrieves the current status of a candidate in the recruitment process", "parameters": {"type": "object", "properties": {"candidate_id": {"type": "string", "description": "Unique identifier for the candidate"}}, "required": ["candidate_id"]}}]<|tool_list_end|><|im_end|>
<|im_start|>user
What is the current status of candidate ID 12345?<|im_end|>
<|im_start|>assistant
<|tool_call_start|>[get_candidate_status(candidate_id="12345")]<|tool_call_end|>Checking the current status of candidate ID 12345.<|im_end|>
<|im_start|>tool
<|tool_response_start|>{"candidate_id": "12345", "status": "Interview Scheduled", "position": "Clinical Research Associate", "date": "2023-11-20"}<|tool_response_end|><|im_end|>
<|im_start|>assistant
The candidate with ID 12345 is currently in the "Interview Scheduled" stage for the position of Clinical Research Associate, with an interview date set for 2023-11-20.<|im_end|>
Architecture: Hybrid model with multiplicative gates and short convolutions: 10 double-gated short-range LIV convolution blocks and 6 grouped query attention (GQA) blocks.
Pre-training mixture: Approximately 75% English, 20% multilingual, and 5% code data sourced from the web and licensed materials.
Training approach:
- Knowledge distillation using LFM1-7B as teacher model
- Very large-scale SFT on 50% downstream tasks, 50% general domains
- Custom DPO with length normalization and semi-online datasets
- Iterative model merging
π How to run LFM2
To run LFM2, you need to install Hugging Face transformers
from source (v4.54.0.dev0).
You can update or install it with the following command: pip install "transformers @ git+https://github.com/huggingface/transformers.git@main"
.
Here is an example of how to generate an answer with transformers in Python:
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model_id = "LiquidAI/LFM2-1.2B"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype="bfloat16",
trust_remote_code=True,
# attn_implementation="flash_attention_2" <- uncomment on compatible GPU
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Generate answer
prompt = "What is C. elegans?"
input_ids = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
return_tensors="pt",
tokenize=True,
).to(model.device)
output = model.generate(
input_ids,
do_sample=True,
temperature=0.3,
min_p=0.15,
repetition_penalty=1.05,
max_new_tokens=512,
)
print(tokenizer.decode(output[0], skip_special_tokens=False))
# <|startoftext|><|im_start|>user
# What is C. elegans?<|im_end|>
# <|im_start|>assistant
# C. elegans, also known as Caenorhabditis elegans, is a small, free-living
# nematode worm (roundworm) that belongs to the phylum Nematoda.
You can directly run and test the model with this Colab notebook.
π§ How to fine-tune LFM2
We recommend fine-tuning LFM2 models on your use cases to maximize performance.
Notebook | Description | Link |
---|---|---|
SFT + LoRA | Supervised Fine-Tuning (SFT) notebook with a LoRA adapter in TRL. | ![]() |
DPO | Preference alignment with Direct Preference Optimization (DPO) in TRL. | ![]() |
π Performance
LFM2 outperforms similar-sized models across different evaluation categories.
1. Automated benchmarks
Model | MMLU | GPQA | IFEval | IFBench | GSM8K | MGSM | MMMLU |
---|---|---|---|---|---|---|---|
LFM2-350M | 43.43 | 27.46 | 65.12 | 16.41 | 30.1 | 29.52 | 37.99 |
LFM2-700M | 49.9 | 28.48 | 72.23 | 20.56 | 46.4 | 45.36 | 43.28 |
LFM2-1.2B | 55.23 | 31.47 | 74.89 | 20.7 | 58.3 | 55.04 | 46.73 |
Qwen3-0.6B | 44.93 | 22.14 | 64.24 | 19.75 | 36.47 | 41.28 | 30.84 |
Qwen3-1.7B | 59.11 | 27.72 | 73.98 | 21.27 | 51.4 | 66.56 | 46.51 |
Llama-3.2-1B-Instruct | 46.6 | 28.84 | 52.39 | 16.86 | 35.71 | 29.12 | 38.15 |
gemma-3-1b-it | 40.08 | 21.07 | 62.9 | 17.72 | 59.59 | 43.6 | 34.43 |
2. LLM-as-a-Judge
3. Inference
Throughput comparison on CPU in ExecuTorch
Throughput comparison on CPU in Llama.cpp
π¬ Contact
If you are interested in custom solutions with edge deployment, please contact our sales team.
- Downloads last month
- 842