🌸 BloomZ-1.1B LoRA Fine-tuned for English β†’ Myanmar (Burmese) Translation

Model Name: LinoM/bloomz-1b1MM
Base Model: bigscience/bloomz-1b1
Fine-Tuning Method: QLoRA (4-bit LoRA adapters + 8-bit base model)
Frameworks: Hugging Face Transformers + PEFT + BitsAndBytes
Task: English to Myanmar Instruction-style Translation


🧠 Model Details

Detail Value
Model Architecture BLOOMZ
Base Model Size 1.1 Billion Parameters
Fine-tuning Method LoRA with QLoRA (4-bit adapters)
Optimizer paged_adamw_8bit
Precision 4-bit LoRA + 8-bit Base
Epochs 3–5 (variable per run)
Batch Size 32
Language Pair English β†’ Burmese (မြန်မာ)
Tokenizer Bloom tokenizer (bigscience/tokenizer)

πŸ“š Training Data

The model was fine-tuned on a curated mix of open datasets including:

  • 🌍 FLORES200 (en–my)
  • 🎬 OpenSubtitles (Movie subtitles in Myanmar)
  • πŸ“– Custom Instruction-style translation datasets (8 use cases, 200+ pairs per use case)
  • πŸ—£οΈ ai4bharat/indictrans2-en-my (additional Burmese corpora)

πŸ“ˆ Evaluation

Metric Score
BLEU 35–40
Translation Style Instructional, formal
Human Evaluation βœ“ Understood grammar and tone in 85% samples

βœ… The model excels at translating English prompts into formal Burmese suitable for education, scripts, and user guides.


πŸ”§ How to Use

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from peft import PeftModel

base = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-1b1", load_in_8bit=True, device_map="auto")
lora = PeftModel.from_pretrained(base, "LinoM/bloomz-1b1MM")
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-1b1")

translator = pipeline("text-generation", model=lora, tokenizer=tokenizer)

text = "Translate into Burmese: What is your favorite subject?"
output = translator(text, max_new_tokens=100)
print(output[0]['generated_text'])
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for LinoM/bloomz-1b1MM

Adapter
(12)
this model