Fatal error loading t5 tokenizer when using diffusers to load "Lightricks/LTX-Video-0.9.7-distilled" and "Lightricks/LTX-Video-0.9.7-dev"
#96
by
kevinmagnopus
- opened
I am trying to setup a diffuser pipeline using LTX Video 0.9.7, however I'm hitting a fatal error when loading the t5 tokenizer. I am using an example script provided by LTX. The error is:
(vidman) % python ltx_demo.py
Fetching 22 files: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββ| 22/22 [00:00<00:00, 57.74it/s]
Loading checkpoint shards: 100%|βββββββββββββββββββββββββββββββββββββββββββ| 4/4 [00:27<00:00, 6.76s/it]
Loading checkpoint shards: 100%|βββββββββββββββββββββββββββββββββββββββββββ| 6/6 [00:00<00:00, 28.97it/s]
Loading pipeline components...: 60%|βββββββββββββββββββββββ | 3/5 [00:27<00:18, 9.14s/it]
Traceback (most recent call last):
File "ltx_demo.py", line 6, in <module>
pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-distilled", torch_dtype=torch.bfloat16)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "miniconda3/envs/vidman/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "miniconda3/envs/vidman/lib/python3.12/site-packages/diffusers/pipelines/pipeline_utils.py", line 961, in from_pretrained
loaded_sub_model = load_sub_model(
^^^^^^^^^^^^^^^
File "miniconda3/envs/vidman/lib/python3.12/site-packages/diffusers/pipelines/pipeline_loading_utils.py", line 709, in load_sub_model
raise ValueError(
ValueError: The component <class 'transformers.models.t5.tokenization_t5._LazyModule.__getattr__.<locals>.Placeholder'> of <class 'diffusers.pipelines.ltx.pipeline_ltx_condition.LTXConditionPipeline'> cannot be loaded as it does not seem to have any of the loading methods defined in {'ModelMixin': ['save_pretrained', 'from_pretrained'], 'SchedulerMixin': ['save_pretrained', 'from_pretrained'], 'DiffusionPipeline': ['save_pretrained', 'from_pretrained'], 'OnnxRuntimeModel': ['save_pretrained', 'from_pretrained'], 'PreTrainedTokenizer': ['save_pretrained', 'from_pretrained'], 'PreTrainedTokenizerFast': ['save_pretrained', 'from_pretrained'], 'PreTrainedModel': ['save_pretrained', 'from_pretrained'], 'FeatureExtractionMixin': ['save_pretrained', 'from_pretrained'], 'ProcessorMixin': ['save_pretrained', 'from_pretrained'], 'ImageProcessingMixin': ['save_pretrained', 'from_pretrained'], 'ORTModule': ['save_pretrained', 'from_pretrained']}.
The ltx_demo.py
python script is:
from diffusers import LTXConditionPipeline
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
from diffusers.utils import export_to_video, load_video
pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-distilled", torch_dtype=torch.bfloat16)
pipe.to("cuda")
pipe.vae.enable_tiling()
prompt = "artistic anatomical 3d render, utlra quality, human half full male body with transparent skin revealing structure instead of organs, muscular, intricate creative patterns, monochromatic with backlighting, lightning mesh, scientific concept art, blending biology with botany, surreal and ethereal quality, unreal engine 5, ray tracing, ultra realistic, 16K UHD, rich details. camera zooms out in a rotating fashion"
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
height, width = 480, 832
num_frames = 121
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
num_frames=num_frames,
guidance_scale=1.0,
num_inference_steps=10,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(42),
).frames[0]
export_to_video(video, "output5.mp4", fps=24)
Using python 3.12.9. The conda environment is:
Package Version
----------------------- -----------
accelerate 1.7.0
aiofiles 24.1.0
annotated-types 0.7.0
anyio 4.9.0
asttokens 3.0.0
certifi 2025.4.26
charset-normalizer 3.4.2
click 8.1.8
contourpy 1.3.2
cycler 0.12.1
decorator 5.2.1
diffusers 0.33.1
executing 2.2.0
fastapi 0.115.12
ffmpy 0.5.0
filelock 3.18.0
fonttools 4.58.0
fsspec 2025.5.0
gradio 5.30.0
gradio_client 1.10.1
groovy 0.1.2
h11 0.16.0
httpcore 1.0.9
httpx 0.28.1
huggingface-hub 0.31.4
idna 3.10
importlib_metadata 8.7.0
ipython 9.2.0
ipython_pygments_lexers 1.1.1
jedi 0.19.2
Jinja2 3.1.6
kiwisolver 1.4.8
markdown-it-py 3.0.0
MarkupSafe 3.0.2
matplotlib 3.10.3
matplotlib-inline 0.1.7
mdurl 0.1.2
mediapy 1.2.4
mpmath 1.3.0
networkx 3.4.2
numpy 2.2.6
opencv-python 4.11.0.86
orjson 3.10.18
packaging 25.0
pandas 2.2.3
parso 0.8.4
pexpect 4.9.0
pillow 11.2.1
pip 25.1
prompt_toolkit 3.0.51
psutil 7.0.0
ptyprocess 0.7.0
pure_eval 0.2.3
pydantic 2.11.4
pydantic_core 2.33.2
pydub 0.25.1
Pygments 2.19.1
pyparsing 3.2.3
python-dateutil 2.9.0.post0
python-multipart 0.0.20
pytz 2025.2
PyYAML 6.0.2
regex 2024.11.6
requests 2.32.3
rich 14.0.0
ruff 0.11.10
safehttpx 0.1.6
safetensors 0.5.3
semantic-version 2.10.0
setuptools 78.1.1
shellingham 1.5.4
six 1.17.0
sniffio 1.3.1
stack-data 0.6.3
starlette 0.46.2
sympy 1.14.0
tokenizers 0.21.1
tomlkit 0.13.2
torch 2.7.0
tqdm 4.67.1
traitlets 5.14.3
transformers 4.52.1
typer 0.15.4
typing_extensions 4.13.2
typing-inspection 0.4.0
tzdata 2025.2
urllib3 2.4.0
uvicorn 0.34.2
wcwidth 0.2.13
websockets 15.0.1
wheel 0.45.1
zipp 3.21.0
Any help is appreciated.