Lewdiculous's picture
Uploading disclaimer.
b9c070c verified
|
raw
history blame
2.13 kB
---
base_model:
- macadeliccc/WestLake-7B-v2-laser-truthy-dpo
- ChaoticNeutrals/This_is_fine_7B
library_name: transformers
tags:
- mistral
- quantized
- text-generation-inference
- mergekit
- merge
pipeline_tag: text-generation
inference: false
---
# [Uploading Q3, Q4, Q5, Q6 and Q8.]
# **GGUF-Imatrix quantizations for [ChaoticNeutrals/Prodigy_7B](https://huggingface.co/ChaoticNeutrals/Prodigy_7B/).**
*If you want any specific quantization to be added, feel free to ask.*
All credits belong to the [creator](https://huggingface.co/ChaoticNeutrals/).
`Base⇢ GGUF(F16)⇢ Imatrix-Data(F16)⇢ GGUF(Imatrix-Quants)`
The new **IQ3_S** quant-option has shown to be better than the old Q3_K_S, so I added that instead of the later. Only supported in `koboldcpp-1.59.1` or higher.
Using [llama.cpp](https://github.com/ggerganov/llama.cpp/)-[b2277](https://github.com/ggerganov/llama.cpp/releases/tag/b2277).
For --imatrix data, `imatrix-Prodigy_7B-F16.dat` was used.
# Original model information:
# Wing
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/626dfb8786671a29c715f8a9/S-E_CADzfAg3xaVX01rdx.jpeg)
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [macadeliccc/WestLake-7B-v2-laser-truthy-dpo](https://huggingface.co/macadeliccc/WestLake-7B-v2-laser-truthy-dpo)
* [ChaoticNeutrals/This_is_fine_7B](https://huggingface.co/ChaoticNeutrals/This_is_fine_7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: ChaoticNeutrals/This_is_fine_7B
layer_range: [0, 32]
- model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo
layer_range: [0, 32]
merge_method: slerp
base_model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: float16
```