Labira/LabiraPJOK_1_1000x
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.2616
- Validation Loss: 4.8341
- Epoch: 24
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
5.9029 | 5.5338 | 0 |
5.5052 | 5.1945 | 1 |
5.0405 | 4.9078 | 2 |
4.5254 | 4.5685 | 3 |
4.1376 | 4.3884 | 4 |
3.8263 | 4.1669 | 5 |
3.5461 | 3.8994 | 6 |
3.1371 | 3.7182 | 7 |
2.7303 | 3.6502 | 8 |
2.4936 | 3.7608 | 9 |
2.2117 | 3.9550 | 10 |
1.9386 | 4.0934 | 11 |
1.7866 | 4.1102 | 12 |
1.4512 | 4.2896 | 13 |
1.1873 | 4.5401 | 14 |
0.9892 | 4.8950 | 15 |
0.8121 | 4.9718 | 16 |
0.7331 | 4.6763 | 17 |
0.6712 | 4.5185 | 18 |
0.5773 | 4.8674 | 19 |
0.4841 | 4.9185 | 20 |
0.3451 | 4.8513 | 21 |
0.2938 | 4.8199 | 22 |
0.3125 | 4.9438 | 23 |
0.2616 | 4.8341 | 24 |
Framework versions
- Transformers 4.45.2
- TensorFlow 2.17.0
- Datasets 2.20.0
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
馃檵
Ask for provider support
Model tree for Labira/LabiraPJOK_1_1000x
Base model
indolem/indobert-base-uncased