Text Generation
Transformers
Safetensors
mistral
Merge
mergekit
lazymergekit
liminerity/M7-7b
Kukedlc/NeuralSirKrishna-7b
Kukedlc/MyModelsMerge-7b
AurelPx/Percival_01-7b-slerp
MatthieuJ/Jason1903_SLERP
MTSAIR/multi_verse_model
Gille/StrangeMerges_30-7B-slerp
chihoonlee10/T3Q-Mistral-Orca-Math-DPO
yam-peleg/Experiment28-7B
mlabonne/UltraMerge-7B
text-generation-inference
Inference Endpoints
SomeModelsMerge-7b
SomeModelsMerge-7b is a merge of the following models using LazyMergekit:
- liminerity/M7-7b
- Kukedlc/NeuralSirKrishna-7b
- Kukedlc/MyModelsMerge-7b
- AurelPx/Percival_01-7b-slerp
- MatthieuJ/Jason1903_SLERP
- MTSAIR/multi_verse_model
- Gille/StrangeMerges_30-7B-slerp
- chihoonlee10/T3Q-Mistral-Orca-Math-DPO
- yam-peleg/Experiment28-7B
- mlabonne/UltraMerge-7B
🧩 Configuration
models:
- model: liminerity/M7-7b
# no parameters necessary for base model
- model: liminerity/M7-7b
parameters:
weight: 0.2
density: 0.88
- model: Kukedlc/NeuralSirKrishna-7b
parameters:
weight: 0.1
density: 0.66
- model: Kukedlc/MyModelsMerge-7b
parameters:
weight: 0.1
density: 0.66
- model: AurelPx/Percival_01-7b-slerp
parameters:
weight: 0.1
density: 0.33
- model: MatthieuJ/Jason1903_SLERP
parameters:
weight: 0.1
density: 0.33
- model: MTSAIR/multi_verse_model
parameters:
weight: 0.1
density: 0.66
- model: Gille/StrangeMerges_30-7B-slerp
parameters:
weight: 0.1
density: 0.55
- model: chihoonlee10/T3Q-Mistral-Orca-Math-DPO
parameters:
weight: 0.1
density: 0.22
- model: yam-peleg/Experiment28-7B
parameters:
weight: 0.1
density: 0.44
- model: mlabonne/UltraMerge-7B
parameters:
weight: 0.1
density: 0.77
merge_method: dare_ties
base_model: liminerity/M7-7b
parameters:
int8_mask: true
normalize: true
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/SomeModelsMerge-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Kukedlc/SomeModelsMerge-7b
Merge model
this model