Ramakrishna-7b-v3
Ramakrishna-7b-v3 is a merge of the following models using LazyMergekit:
- automerger/YamShadow-7B
- Kukedlc/Neural4gsm8k
- Kukedlc/NeuralSirKrishna-7b
- mlabonne/NeuBeagle-7B
- Kukedlc/Ramakrishna-7b
- Kukedlc/NeuralGanesha-7b
𧩠Configuration
models:
- model: automerger/YamShadow-7B
# No parameters necessary for base model
- model: automerger/YamShadow-7B
parameters:
density: 0.6
weight: 0.2
- model: Kukedlc/Neural4gsm8k
parameters:
density: 0.3
weight: 0.1
- model: Kukedlc/NeuralSirKrishna-7b
parameters:
density: 0.6
weight: 0.2
- model: mlabonne/NeuBeagle-7B
parameters:
density: 0.5
weight: 0.15
- model: Kukedlc/Ramakrishna-7b
parameters:
density: 0.6
weight: 0.25
- model: Kukedlc/NeuralGanesha-7b
parameters:
density: 0.6
weight: 0.1
merge_method: dare_ties
base_model: automerger/YamShadow-7B
parameters:
int8_mask: true
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/Ramakrishna-7b-v3"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 78
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Kukedlc/Ramakrishna-7b-v3
Merge model
this model