|
--- |
|
base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit |
|
language: |
|
- bn |
|
license: apache-2.0 |
|
tags: |
|
- Bengali |
|
- QA |
|
- llama-3 |
|
- instruct |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Bangla-Llama-3.2-3B-Instruct-QA-v2 |
|
|
|
<b>Bengali Question-Answering Model</b> | Fine-tuned on Llama-3 Architecture | Version 2 |
|
|
|
## Model Description |
|
This model is optimized for question-answering in the Bengali language. It is fine-tuned using **Llama-3-3B** architecture with Unsloth. The model is trained on a **context-aware instruct dataset**, designed to generate accurate and relevant responses. |
|
|
|
## How to Use |
|
|
|
### Required Libraries |
|
```bash |
|
pip install transformers torch accelerate |
|
``` |
|
|
|
### Code Example |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
import torch |
|
|
|
model_name = "Kowshik24/Bangla-llama-3.2-3B-Instruct-QA-v2" |
|
|
|
# Load model and tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
|
|
# Setting up system and user prompts |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "১৯৫২ সালের ২১ ফেব্রুয়ারি বাংলা ভাষাকে পাকিস্তানের রাষ্ট্রভাষা হিসেবে স্বীকৃতি দেওয়ার দাবিতে ঢাকা বিশ্ববিদ্যালয়ের ছাত্ররা বিক্ষোভ করে। পুলিশের গুলিতে শহিদ হন রফিক, সালাম, বরকতসহ অনেকে। এই আন্দোলনের ফলস্বরূপ ১৯৫৬ সালে বাংলা রাষ্ট্রভাষার মর্যাদা পায় এবং পরবর্তীতে UNESCO ১৯৯৯ সালে ২১ ফেব্রুয়ারিকে আন্তর্জাতিক মাতৃভাষা দিবস ঘোষণা করে।" |
|
}, |
|
{ |
|
"role": "user", |
|
"content": "ভাষা আন্দোলনের দিনটি কোন তারিখে পালিত হয়?" |
|
}, |
|
] |
|
|
|
# Processing chat template |
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
# Generating the answer |
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=256, |
|
temperature=0.01, |
|
do_sample=True, |
|
pad_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
# Decoding the output |
|
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
answer = full_response.split("assistant\n\n")[-1].strip() |
|
print("Answer:", answer) |
|
``` |
|
|
|
### Output |
|
``` |
|
Answer: ২১ ফেব্রুয়ারি |
|
``` |
|
|
|
## Hyperparameters |
|
| Parameter | Value | Explanation | |
|
|-----------------|---------|----------------------------------| |
|
| `temperature` | 0.01 | Low creativity (deterministic) | |
|
| `max_new_tokens`| 256 | Maximum output length | |
|
| `torch_dtype` | bfloat16| Memory optimization | |
|
|
|
## Training Details |
|
- **Architecture**: Llama-3-3B Instruct |
|
- **Fine-tuning**: Unsloth (4-bit QLoRA) |
|
|
|
## Use Cases |
|
- Educational tools |
|
- Bengali chatbots |
|
- Documentation Q&A |
|
- Journalism research |
|
|
|
## Limitations |
|
- Cannot support long contexts (more than 4K tokens) |
|
|
|
## Ethical AI |
|
This model is designed following ethical guidelines. It should not be used to generate harmful content. |
|
|
|
## Citation |
|
If this model helps you in your work, please cite it as follows: |
|
```bibtex |
|
@software{BanglaLlama3QA, |
|
author = {Kowshik}, |
|
title = {Bangla-Llama-3.2-3B-Instruct-QA-v2}, |
|
year = {2024}, |
|
publisher = {Hugging Face}, |
|
url = {https://huggingface.co/Kowshik24/Bangla-llama-3.2-3B-Instruct-QA-v2} |
|
} |
|
``` |
|
|
|
## Contact |
|
For questions or suggestions, email: [[email protected]](mailto:[email protected]) |