π LoRA-mBART50: English β Telugu Translation (Few-shot)
This model is a parameter-efficient fine-tuned version of facebook/mbart-large-50-many-to-many-mmt using LoRA (Low-Rank Adaptation) via the Hugging Face PEFT library.
It is fine-tuned in a few-shot setting on the HackHedron English-Telugu Parallel Corpus using just 1% of the data (~4.3k pairs).
π§ Model Details
- Base model:
facebook/mbart-large-50-many-to-many-mmt
- Languages:
en_XX
βte_IN
- Technique: LoRA (r=8, Ξ±=32, dropout=0.1)
- Training regime: 3 epochs, batch size 8, learning rate 5e-4
- Library: π€ PEFT (
peft
),transformers
,datasets
π Dataset
- Source: HackHedron/English_Telugu_Parallel_Corpus
- Size used: 4338 sentence pairs (~1%)
- Format:
english
: Source texttelugu
: Target translation
π» Usage
Load Adapter with Base mBART
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from peft import PeftModel
# Load base model & tokenizer
base_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("your-username/lora-mbart-en-te")
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "your-username/lora-mbart-en-te")
# Set source and target languages
tokenizer.src_lang = "en_XX"
tokenizer.tgt_lang = "te_IN"
# Prepare input
inputs = tokenizer("Hello, how are you?", return_tensors="pt")
generated_ids = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["te_IN"])
translation = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(translation)
π§ Training Configuration
Setting | Value |
---|---|
Base Model | mBART-50 |
LoRA r | 8 |
LoRA Alpha | 32 |
Dropout | 0.1 |
Optimizer | AdamW |
Batch Size | 8 |
Epochs | 3 |
Mixed Precision | fp16 |
π Applications
- English β Telugu translation for low-resource settings
- Mobile/Edge inference with minimal memory
- Foundation for multilingual LoRA adapters
β οΈ Limitations
- Trained on limited data (1% subset)
- Translation quality may vary on unseen or complex sentences
- Only supports
en_XX
andte_IN
(Telugu) at this stage
π Citation
If you use this model, please cite the base model:
@inproceedings{liu2020mbart,
title={Multilingual Denoising Pre-training for Neural Machine Translation},
author={Liu, Yinhan and others},
booktitle={ACL},
year={2020}
}
π§βπ» Author
Fine-tuned by Koushik Reddy, ML & DL Enthusiast | NLP | LoRA | mBART | Hugging Face
Connect: Hugging Face
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support