YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Loading the Generator Model
To load and initialize the Generator
(based on CycleGAN with better cycles) model from the repository, follow these steps:
1. Install Required Packages
Ensure you have the necessary Python packages installed:
pip install torch==2.5.1 torchvision==0.20.1 huggingface_hub
2. Download Model Files
Retrieve the generator.pth
and model.py
files from the Hugging Face repository using the huggingface_hub
library:
from huggingface_hub import hf_hub_download
repo_id = "Kiwinicki/sat2map-generator"
model_path = hf_hub_download(repo_id=repo_id, filename="generator.pth")
generator_code_path = hf_hub_download(repo_id=repo_id, filename="model.py")
3. Load the Model
Import the Generator
class and load the model weights from the .pth
file:
import torch
from model import Generator, GeneratorConfig
# Load the generator model
cfg = GeneratorConfig()
generator = Generator(cfg)
generator.load_state_dict(torch.load('generator.pth'))
generator.eval()
# Test the model
x = torch.randn([1, cfg.channels, 256, 256])
out = generator(x)
print(f"Output shape: {out.shape}")
4. Model Configuration
The model uses the following default configuration:
- channels: 3 (RGB images)
- num_features: 64 (base number of features)
- num_residuals: 12 (number of residual blocks)
- depth: 4 (network depth)
The generator
is now ready for inference on satellite-to-map translation tasks.
Model trained by Andrii Norets from "Czarna Magia".
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support