Osmosis Coverage Classifier

This model classifies educational content coverage into three categories: low, fair, and satisfactory.

Model Description

  • Base Model: distilbert-base-uncased
  • Task: Multi-class text classification
  • Classes: low (0), fair (1), satisfactory (2)
  • Training Data: Custom osmosis dataset

Performance

  • Overall Test Accuracy: 0.7600
  • Macro F1 Score: 0.7584
  • Macro Precision: 0.7571
  • Macro Recall: 0.7600

Per-Class Performance

  • Low: Precision: 0.8897, Recall: 0.9240, F1: 0.9065
  • Fair: Precision: 0.6577, Recall: 0.6365, F1: 0.6469
  • Satisfactory: Precision: 0.7239, Recall: 0.7193, F1: 0.7216

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("KingTechnician/bert-osmosis-coverage-v2")
model = AutoModelForSequenceClassification.from_pretrained("KingTechnician/bert-osmosis-coverage-v2")

# Example usage
objective = "Your learning objective here"
response = "The response text to classify"

inputs = tokenizer(objective, response, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
    outputs = model(**inputs)
    predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
    predicted_class = torch.argmax(predictions, dim=-1).item()
    
# Map prediction to label
id2label = {0: "low", 1: "fair", 2: "satisfactory"}
predicted_label = id2label[predicted_class]
print(f"Predicted coverage: {predicted_label}")

Training Details

  • Learning Rate: 2e-5
  • Batch Size: 64
  • Epochs: 3
  • Weight Decay: 0.01
Downloads last month
9
Safetensors
Model size
67M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for KingTechnician/bert-osmosis-coverage-v2

Finetuned
(9385)
this model
Quantizations
1 model