KenLumod's picture
Update README.md
f8a5428 verified
metadata
language:
  - en
metrics:
  - accuracy
  - f1
  - precision
  - recall
base_model:
  - distilbert/distilbert-base-uncased-finetuned-sst-2-english
pipeline_tag: text-classification
tags:
  - fake
  - real
  - news
library_name: transformers

DistilBERT Fake News Classifier

Model Description

This DistilBERT-based model achieves 97.18% accuracy in classifying news articles as real or fake, with balanced precision (97.17%) and recall (97.30%).

Training Performance

Epoch Training Loss Validation Loss Accuracy F1 Score
1 - 0.1115 96.08% 96.09%
2 0.2026 0.1077 97.25% 97.28%
3 0.0647 0.1119 97.45% 97.50%

Final Test Results

Metric Score
Accuracy 97.18%
F1 Score 97.23%
Precision 97.17%
Recall 97.30%

Usage

from transformers import pipeline

classifier = pipeline("text-classification", 
                    model="KenLumod/ML-Project-DistilBERT-Fake-and-Real-Classifier")
result = classifier("Scientists confirm climate change accelerating beyond previous estimates")
# Output: {'label': 'REAL', 'score': 0.982}