Mi:dm 2.0 Mini
🤗 Mi:dm 2.0 Models | 📜 Mi:dm 2.0 Technical Report | 📕 Mi:dm 2.0 Technical Blog*
*To be released soon
News 📢
- 🔜 (Coming Soon!) GGUF format model files will be available soon for easier local deployment.
- ⚡️
2025/07/04
: Released Mi:dm 2.0 Model collection on Hugging Face🤗.
Table of Contents
- Overview
- Usage
- More Information
Overview
Mi:dm 2.0
Mi:dm 2.0 is a "Korea-centric AI" model developed using KT's proprietary technology. The term "Korea-centric AI" refers to a model that deeply internalizes the unique values, cognitive frameworks, and commonsense reasoning inherent to Korean society. It goes beyond simply processing or generating Korean text—it reflects a deeper understanding of the socio-cultural norms and values that define Korean society.
Mi:dm 2.0 is released in two versions:
Mi:dm 2.0 Base
An 11.5B parameter dense model designed to balance model size and performance.
It extends an 8B-scale model by applying the Depth-up Scaling (DuS) method, making it suitable for real-world applications that require both performance and versatility.Mi:dm 2.0 Mini
A lightweight 2.3B parameter dense model optimized for on-device environments and systems with limited GPU resources.
It was derived from the Base model through pruning and distillation to enable compact deployment.
Neither the pre-training nor the post-training data includes KT users' data.
Quickstart
Here is the code snippet to run conversational inference with the model:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
model_name = "K-intelligence/Midm-2.0-Mini-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
generation_config = GenerationConfig.from_pretrained(model_name)
prompt = "KT에 대해 소개해줘"
# message for inference
messages = [
{"role": "system",
"content": "Mi:dm(믿:음)은 KT에서 개발한 AI 기반 어시스턴트이다."},
{"role": "user", "content": prompt}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
)
output = model.generate(
input_ids.to("cuda"),
generation_config=generation_config,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=128,
do_sample=False,
)
print(tokenizer.decode(output[0]))
The
transformers
library should be version4.45.0
or higher.
Evaluation
Korean
Model | Society & Culture | General Knowledge | Instruction Following | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
K-Refer* | K-Refer-Hard* | Ko-Sovereign* | HAERAE | Avg. | KMMLU | Ko-Sovereign* | Avg. | Ko-IFEval | Ko-MTBench | Avg. | ||
Qwen3-4B | 53.6 | 42.9 | 35.8 | 50.6 | 45.7 | 50.6 | 42.5 | 46.5 | 75.9 | 63.0 | 69.4 | |
Exaone-3.5-2.4B-inst | 64.0 | 67.1 | 44.4 | 61.3 | 59.2 | 43.5 | 42.4 | 43.0 | 65.4 | 74.0 | 68.9 | |
Mi:dm 2.0-Mini-inst | 66.4 | 61.4 | 36.7 | 70.8 | 58.8 | 45.1 | 42.4 | 43.8 | 73.3 | 74.0 | 73.6 | |
Qwen3-14B | 72.4 | 65.7 | 49.8 | 68.4 | 64.1 | 55.4 | 54.7 | 55.1 | 83.6 | 71 | 77.3 | |
Llama-3.1-8B-inst | 43.2 | 36.4 | 33.8 | 49.5 | 40.7 | 33.0 | 36.7 | 34.8 | 60.1 | 57 | 58.5 | |
Exaone-3.5-7.8B-inst | 71.6 | 69.3 | 46.9 | 72.9 | 65.2 | 52.6 | 45.6 | 49.1 | 69.1 | 79.6 | 74.4 | |
Mi:dm 2.0-Base-inst | 89.6 | 86.4 | 56.3 | 81.5 | 78.4 | 57.3 | 58.0 | 57.7 | 82 | 89.7 | 85.9 |
Model | Comprehension | Reasoning | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
K-Prag* | K-Refer-Hard* | Ko-Best | Ko-Sovereign* | Avg. | Ko-Winogrande | Ko-Best | LogicKor | HRM8K | Avg. | |
Qwen3-4B | 73.9 | 56.7 | 91.5 | 43.5 | 66.6 | 67.5 | 69.2 | 5.6 | 56.7 | 43.8 |
Exaone-3.5-2.4B-inst | 68.7 | 58.5 | 87.2 | 38.0 | 62.5 | 60.3 | 64.1 | 7.4 | 38.5 | 36.7 |
Mi:dm 2.0-Mini-inst | 69.5 | 55.4 | 80.5 | 42.5 | 61.9 | 61.7 | 64.5 | 7.7 | 39.9 | 37.4 |
Qwen3-14B | 86.7 | 74.0 | 93.9 | 52.0 | 76.8 | 77.2 | 75.4 | 6.4 | 64.5 | 48.8 |
Llama-3.1-8B-inst | 59.9 | 48.6 | 77.4 | 31.5 | 51.5 | 40.1 | 26.0 | 2.4 | 30.9 | 19.8 |
Exaone-3.5-7.8B-inst | 73.5 | 61.9 | 92.0 | 44.0 | 67.2 | 64.6 | 60.3 | 8.6 | 49.7 | 39.5 |
Mi:dm 2.0-Base-inst | 86.5 | 70.8 | 95.2 | 53.0 | 76.1 | 75.1 | 73.0 | 8.6 | 52.9 | 44.8 |
*
indicates KT proprietary evaluation resources.
English
Model | Instruction | Reasoning | Math | Coding | General Knowledge | |||||
---|---|---|---|---|---|---|---|---|---|---|
IFEval | BBH | GPQA | MuSR | Avg. | GSM8K | MBPP+ | MMLU-pro | MMLU | Avg. | |
Qwen3-4B | 79.7 | 79.0 | 39.8 | 58.5 | 59.1 | 90.4 | 62.4 | - | 73.3 | 73.3 |
Exaone-3.5-2.4B-inst | 81.1 | 46.4 | 28.1 | 49.7 | 41.4 | 82.5 | 59.8 | - | 59.5 | 59.5 |
Mi:dm 2.0-Mini-inst | 73.6 | 44.5 | 26.6 | 51.7 | 40.9 | 83.1 | 60.9 | - | 56.5 | 56.5 |
Qwen3-14B | 83.9 | 83.4 | 49.8 | 57.7 | 63.6 | 88.0 | 73.4 | 70.5 | 82.7 | 76.6 |
Llama-3.1-8B-inst | 79.9 | 60.3 | 21.6 | 50.3 | 44.1 | 81.2 | 81.8 | 47.6 | 70.7 | 59.2 |
Exaone-3.5-7.8B-inst | 83.6 | 50.1 | 33.1 | 51.2 | 44.8 | 81.1 | 79.4 | 40.7 | 69.0 | 54.8 |
Mi:dm 2.0-Base-inst | 84.0 | 77.7 | 33.5 | 51.9 | 54.4 | 91.6 | 77.5 | 53.3 | 73.7 | 63.5 |
Usage
Run on Friendli.AI
You can try our model immediately via Friendli.AI
. Simply click Deploy
and then Friendli Endpoints
.
Please note that a login to
Friendli.AI
is required after your fifth chat interaction.
Run on Your Local Machine
We provide a detailed description about running Mi:dm 2.0 on your local machine using llama.cpp, LM Studio, and Ollama. Please check our github for more information
Deployment
To serve Mi:dm 2.0 using vLLM(>=0.8.0
) with an OpenAI-compatible API:
vllm serve K-intelligence/Midm-2.0-Mini-Instruct
Tutorials
To help our end-users easily use Mi:dm 2.0, we have provided comprehensive tutorials on github.
More Information
Limitation
The training data for both Mi:dm 2.0 models consists primarily of English and Korean. Understanding and generation in other languages are not guaranteed.
The model is not guaranteed to provide reliable advice in fields that require professional expertise, such as law, medicine, or finance.
Researchers have made efforts to exclude unethical content from the training data — such as profanity, slurs, bias, and discriminatory language. However, despite these efforts, the model may still produce inappropriate expressions or factual inaccuracies.
License
Mi:dm 2.0 is licensed under the MIT License.
Contact
Mi:dm 2.0 Technical Inquiries: [email protected]
- Downloads last month
- 2,416