|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
base_model: |
|
- codellama/CodeLlama-7b-hf |
|
--- |
|
# **TL-CodeLLaMA-2** |
|
|
|
TL-CodeLLaMA-2 is a model designed for tool use, built upon CodeLLaMA-7b. It is trained on 1,217 data samples using the *TL-Training* framework and demonstrates effective performance across a variety of tool use tasks. More information can be found in the paper "[TL-Training: A Task-Feature-Based Framework for Training Large Language Models in Tool Use](https://www.arxiv.org/abs/2412.15495)". |
|
|
|
# Model Use |
|
|
|
## Requirements |
|
|
|
To use this model, please make sure to install transformers: |
|
```bash |
|
pip install transformers |
|
``` |
|
|
|
## Data Orgnization |
|
|
|
The data needs to be organized in the following format: |
|
|
|
```json |
|
[ |
|
{ |
|
"role": "System", |
|
"content": "Function:\ndef random_advice():\n \"\"\"\n Returns a random advice slip as a slip object.\n \"\"\"\n\nFunction:\ndef advice_by_id(slip_id:str):\n \"\"\"\n If an advice slip is found with the corresponding {slip_id}, a slip object is returned.\n\n Args:\n slip_id (string): The unique ID of this advice slip.\n \"\"\"\n\nFunction:\ndef search_advice(query:str):\n \"\"\"\n If an advice slip is found, containing the corresponding search term in {query}, an array of slip objects is returned inside a search object.\n\n Args:\n query (string): The search query provided.\n \"\"\"\n\nFunction:\ndef ask_to_user(question:str):\n \"\"\"\n You can ask user for guidance when you think you need more information to handle the task, but you should use this tool as less as you can.\n\n Args:\n question (string): The question you want to ask to user.\n \"\"\"\n\nFunction:\ndef finish(answer:str):\n \"\"\"\n Finish the task and give your answer.\n\n Args:\n answer (string): Your answer for the task.\n \"\"\"\n\n" |
|
}, |
|
{ |
|
"role": "User", |
|
"content": "Could you give me some advice about 'love'?" |
|
}, |
|
{ |
|
"role": "Assistant", |
|
"content": "search_advice(query = 'love') " |
|
}, |
|
{ |
|
"role": "Output", |
|
"content": "..." |
|
} |
|
] |
|
``` |
|
|
|
## Chat Template |
|
|
|
The chat template is: |
|
|
|
```jinja |
|
{% for message in messages %}{{message['role'] + ': ' + message['content']}}{% if loop.last %}{% if add_generation_prompt %}{{ '\nAssistant:' }}{% else %}{{ '</s>'}}{% endif %}{% else %}{{ '\n' }}{% endif %}{% endfor %} |
|
``` |
|
|
|
## Inference |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_path = "Junjie-Ye/TL-CodeLLaMA-2" |
|
|
|
data = [ |
|
{ |
|
"role": "System", |
|
"content": "Function:\ndef random_advice():\n \"\"\"\n Returns a random advice slip as a slip object.\n \"\"\"\n\nFunction:\ndef advice_by_id(slip_id:str):\n \"\"\"\n If an advice slip is found with the corresponding {slip_id}, a slip object is returned.\n\n Args:\n slip_id (string): The unique ID of this advice slip.\n \"\"\"\n\nFunction:\ndef search_advice(query:str):\n \"\"\"\n If an advice slip is found, containing the corresponding search term in {query}, an array of slip objects is returned inside a search object.\n\n Args:\n query (string): The search query provided.\n \"\"\"\n\nFunction:\ndef ask_to_user(question:str):\n \"\"\"\n You can ask user for guidance when you think you need more information to handle the task, but you should use this tool as less as you can.\n\n Args:\n question (string): The question you want to ask to user.\n \"\"\"\n\nFunction:\ndef finish(answer:str):\n \"\"\"\n Finish the task and give your answer.\n\n Args:\n answer (string): Your answer for the task.\n \"\"\"\n\n" |
|
}, |
|
{ |
|
"role": "User", |
|
"content": "Could you give me some advice about 'love'?" |
|
} |
|
] |
|
|
|
chat_template = "{% for message in messages %}{{message['role'] + ': ' + message['content']}}{% if loop.last %}{% if add_generation_prompt %}{{ '\nAssistant:' }}{% else %}{{ '</s>'}}{% endif %}{% else %}{{ '\n' }}{% endif %}{% endfor %}" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
torch_dtype="auto", |
|
device_map="auto", |
|
trust_remote_code=True |
|
).eval() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, |
|
padding_side="left", |
|
trust_remote_code=True) |
|
if tokenizer.pad_token_id is None: |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
text = tokenizer.apply_chat_template( |
|
data, |
|
tokenize=False, |
|
chat_template=chat_template, |
|
add_generation_prompt=add_generation_prompt |
|
) |
|
model_inputs = tokenizer( |
|
[text], return_tensors="pt", padding=True).to("cuda") |
|
|
|
generated_ids = model.generate( |
|
max_new_tokens=1024, |
|
**model_inputs, |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) |
|
|
|
print(response) |
|
``` |