vit_focus
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0604
- Mse: 0.1248
- Mae: 0.3083
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Mse | Mae |
---|---|---|---|---|---|
No log | 1.0 | 25 | 0.0685 | 0.1397 | 0.3276 |
0.2799 | 2.0 | 50 | 0.0614 | 0.1327 | 0.3184 |
0.2799 | 3.0 | 75 | 0.0575 | 0.1317 | 0.3171 |
0.2134 | 4.0 | 100 | 0.0683 | 0.1370 | 0.3236 |
0.2018 | 5.0 | 125 | 0.0610 | 0.1353 | 0.3213 |
0.2018 | 6.0 | 150 | 0.0596 | 0.1295 | 0.3133 |
0.1714 | 7.0 | 175 | 0.0588 | 0.1327 | 0.3186 |
0.1589 | 8.0 | 200 | 0.0621 | 0.1348 | 0.3204 |
0.1589 | 9.0 | 225 | 0.0615 | 0.1306 | 0.3157 |
0.1381 | 10.0 | 250 | 0.0557 | 0.1280 | 0.3118 |
0.1381 | 11.0 | 275 | 0.0580 | 0.1311 | 0.3158 |
0.1229 | 12.0 | 300 | 0.0563 | 0.1294 | 0.3139 |
0.1112 | 13.0 | 325 | 0.0629 | 0.1393 | 0.3253 |
0.1112 | 14.0 | 350 | 0.0605 | 0.1290 | 0.3128 |
0.0999 | 15.0 | 375 | 0.0604 | 0.1248 | 0.3083 |
0.0896 | 16.0 | 400 | 0.0556 | 0.1308 | 0.3153 |
0.0896 | 17.0 | 425 | 0.0610 | 0.1347 | 0.3201 |
0.0776 | 18.0 | 450 | 0.0574 | 0.1259 | 0.3093 |
0.0776 | 19.0 | 475 | 0.0584 | 0.1253 | 0.3085 |
0.069 | 20.0 | 500 | 0.0595 | 0.1265 | 0.3097 |
0.0649 | 21.0 | 525 | 0.0576 | 0.1308 | 0.3150 |
0.0649 | 22.0 | 550 | 0.0574 | 0.1274 | 0.3109 |
0.056 | 23.0 | 575 | 0.0578 | 0.1307 | 0.3149 |
0.0508 | 24.0 | 600 | 0.0563 | 0.1296 | 0.3139 |
0.0508 | 25.0 | 625 | 0.0568 | 0.1312 | 0.3157 |
0.0468 | 26.0 | 650 | 0.0578 | 0.1287 | 0.3123 |
0.0468 | 27.0 | 675 | 0.0579 | 0.1305 | 0.3147 |
0.0432 | 28.0 | 700 | 0.0572 | 0.1301 | 0.3143 |
0.0419 | 28.8247 | 720 | 0.0580 | 0.1308 | 0.3150 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support