Easy CLIP Embeddings alignment with Guannaco Models

pipe = StableDiffusionPipeline(...)
# llm_model = load_quant('/GuanacoOnConsumerHardware', 'guanaco7b-4bit-128g.pt', 4, 128, 0)
llm_tokenizer = LlamaTokenizer.from_pretrained("JosephusCheung/Guanaco",use_fast=False,torch_dtype=torch.float16)
llm_model = LlamaForCausalLM.from_pretrained("JosephusCheung/Guanaco",device_map="auto",torch_dtype=torch.float16)

class LLMToCLIP(nn.Module):
    def __init__(self):
        super(LLMToCLIP, self).__init__()
        self.proj = nn.Linear(4096, 4096, bias=False)
        self.deproj = nn.Linear(4096, 768, bias=False)
        
    def forward(self, x):
        a = self.proj(x)
        b = self.deproj(a)
        return b

llm_to_clip=LLMToCLIP()
llm_to_clip.load_state_dict(torch.load("toclip.pth"))

llm_embeddings = llm_model(input_ids=input_ids, output_hidden_states=True).hidden_states[-1]

image = pipe(prompt_embeds=llm_to_clip(llm_embeddings)).images[0]
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.