song_a_day_gpt2_all / README.md
Jonathanmann's picture
End of training
7bb20d0 verified
metadata
library_name: transformers
license: mit
base_model: gpt2-medium
tags:
  - generated_from_trainer
model-index:
  - name: song_a_day_gpt2_all
    results: []

song_a_day_gpt2_all

This model is a fine-tuned version of gpt2-medium on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0565

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.7649 0.1550 50 3.4886
3.6032 0.3101 100 3.3497
3.4405 0.4651 150 3.2716
3.3981 0.6202 200 3.2304
3.3739 0.7752 250 3.2005
3.3871 0.9302 300 3.1779
3.1784 1.0853 350 3.1585
3.1311 1.2403 400 3.1418
3.1673 1.3953 450 3.1298
3.2047 1.5504 500 3.1215
3.1322 1.7054 550 3.1100
3.1048 1.8605 600 3.0982
3.1359 2.0155 650 3.0885
2.9576 2.1705 700 3.0837
2.9204 2.3256 750 3.0745
2.9127 2.4806 800 3.0654
2.8982 2.6357 850 3.0628
3.0112 2.7907 900 3.0554
2.9847 2.9457 950 3.0466
2.7827 3.1008 1000 3.0590
2.7837 3.2558 1050 3.0573
2.8772 3.4109 1100 3.0577
2.8217 3.5659 1150 3.0564
2.813 3.7209 1200 3.0565

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3