bert-finetuned-ner

This model is a fine-tuned version of microsoft/biogpt on the ncbi_disease dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2151
  • Precision: 0.0822
  • Recall: 0.0750
  • F1: 0.0784
  • Accuracy: 0.9370

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3388 1.0 679 0.2280 0.0292 0.0254 0.0272 0.9312
0.2425 2.0 1358 0.2161 0.0612 0.0572 0.0591 0.9345
0.1811 3.0 2037 0.2151 0.0822 0.0750 0.0784 0.9370

Framework versions

  • Transformers 4.51.2
  • Pytorch 2.1.0+cu121
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
22
Safetensors
Model size
347M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Jise/bert-finetuned-ner

Base model

microsoft/biogpt
Finetuned
(57)
this model

Dataset used to train Jise/bert-finetuned-ner

Evaluation results