Abhijit Bhattacharya
Add Chatterbox-TTS Apple Silicon code - Fixed app.py with Apple Silicon compatibility - Requirements and documentation included - No MPS tensor allocation errors - Ready for local download and usage
3836582
#!/usr/bin/env python3 | |
""" | |
Chatterbox-TTS Gradio App - Based on Official ResembleAI Implementation | |
Adapted for local usage with MPS GPU support on Apple Silicon | |
Original: https://huggingface.co/spaces/ResembleAI/Chatterbox/tree/main | |
""" | |
import random | |
import numpy as np | |
import torch | |
import gradio as gr | |
import logging | |
from pathlib import Path | |
import sys | |
import re | |
from typing import List | |
# Setup logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Monkey patch torch.load to handle device mapping for Chatterbox-TTS | |
original_torch_load = torch.load | |
def patched_torch_load(f, map_location=None, **kwargs): | |
""" | |
Patched torch.load that automatically maps CUDA tensors to CPU/MPS | |
""" | |
if map_location is None: | |
# Default to CPU for compatibility | |
map_location = 'cpu' | |
logger.info(f"π§ Loading with map_location={map_location}") | |
return original_torch_load(f, map_location=map_location, **kwargs) | |
# Apply the patch immediately after torch import | |
torch.load = patched_torch_load | |
# Also patch it in the torch module namespace to catch all uses | |
if 'torch' in sys.modules: | |
sys.modules['torch'].load = patched_torch_load | |
logger.info("β Applied comprehensive torch.load device mapping patch") | |
# Device detection with MPS support | |
# Note: Chatterbox-TTS has compatibility issues with MPS, forcing CPU for stability | |
if torch.cuda.is_available(): | |
DEVICE = "cuda" | |
logger.info("π Running on CUDA GPU") | |
else: | |
DEVICE = "cpu" | |
if torch.backends.mps.is_available(): | |
logger.info("π Apple Silicon detected - using CPU mode for Chatterbox-TTS compatibility") | |
logger.info("π‘ Note: MPS support is disabled due to chatterbox-tts library limitations") | |
else: | |
logger.info("π Running on CPU") | |
print(f"π Running on device: {DEVICE}") | |
# Try different import paths for chatterbox | |
MODEL = None | |
def get_or_load_model(): | |
"""Loads the ChatterboxTTS model if it hasn't been loaded already, | |
and ensures it's on the correct device.""" | |
global MODEL, DEVICE | |
if MODEL is None: | |
print("Model not loaded, initializing...") | |
try: | |
# Try the official import path first | |
try: | |
from chatterbox.src.chatterbox.tts import ChatterboxTTS | |
logger.info("β Using official chatterbox.src import path") | |
except ImportError: | |
# Fallback to our previous import | |
from chatterbox import ChatterboxTTS | |
logger.info("β Using chatterbox direct import path") | |
# Load model to CPU first to avoid device issues | |
MODEL = ChatterboxTTS.from_pretrained("cpu") | |
# Move to target device if not CPU | |
if DEVICE != "cpu": | |
logger.info(f"Moving model components to {DEVICE}...") | |
try: | |
# For MPS, use safer tensor movement | |
if DEVICE == "mps": | |
# Move components with MPS-safe approach | |
if hasattr(MODEL, 't3') and MODEL.t3 is not None: | |
MODEL.t3 = MODEL.t3.to(DEVICE) | |
logger.info("β t3 component moved to MPS") | |
if hasattr(MODEL, 's3gen') and MODEL.s3gen is not None: | |
MODEL.s3gen = MODEL.s3gen.to(DEVICE) | |
logger.info("β s3gen component moved to MPS") | |
if hasattr(MODEL, 've') and MODEL.ve is not None: | |
MODEL.ve = MODEL.ve.to(DEVICE) | |
logger.info("β ve component moved to MPS") | |
else: | |
# Standard device movement for CUDA | |
if hasattr(MODEL, 't3'): | |
MODEL.t3 = MODEL.t3.to(DEVICE) | |
if hasattr(MODEL, 's3gen'): | |
MODEL.s3gen = MODEL.s3gen.to(DEVICE) | |
if hasattr(MODEL, 've'): | |
MODEL.ve = MODEL.ve.to(DEVICE) | |
MODEL.device = DEVICE | |
logger.info(f"β All model components moved to {DEVICE}") | |
except Exception as e: | |
logger.warning(f"β οΈ Failed to move some components to {DEVICE}: {e}") | |
logger.info("π Falling back to CPU mode for stability") | |
DEVICE = "cpu" | |
MODEL.device = "cpu" | |
logger.info(f"β Model loaded successfully on {DEVICE}") | |
except Exception as e: | |
logger.error(f"β Error loading model: {e}") | |
raise | |
return MODEL | |
def set_seed(seed: int): | |
"""Sets the random seed for reproducibility across torch, numpy, and random.""" | |
torch.manual_seed(seed) | |
if DEVICE == "cuda": | |
torch.cuda.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
elif DEVICE == "mps": | |
# MPS doesn't have separate seed functions | |
pass | |
random.seed(seed) | |
np.random.seed(seed) | |
def split_text_into_chunks(text: str, max_chars: int = 250) -> List[str]: | |
""" | |
Split text into chunks at sentence boundaries, respecting max character limit. | |
Args: | |
text: Input text to split | |
max_chars: Maximum characters per chunk | |
Returns: | |
List of text chunks | |
""" | |
if len(text) <= max_chars: | |
return [text] | |
# Split by sentences first (period, exclamation, question mark) | |
sentences = re.split(r'(?<=[.!?])\s+', text) | |
chunks = [] | |
current_chunk = "" | |
for sentence in sentences: | |
# If single sentence is too long, split by commas or spaces | |
if len(sentence) > max_chars: | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
current_chunk = "" | |
# Split long sentence by commas | |
parts = re.split(r'(?<=,)\s+', sentence) | |
for part in parts: | |
if len(part) > max_chars: | |
# Split by spaces as last resort | |
words = part.split() | |
word_chunk = "" | |
for word in words: | |
if len(word_chunk + " " + word) <= max_chars: | |
word_chunk += " " + word if word_chunk else word | |
else: | |
if word_chunk: | |
chunks.append(word_chunk.strip()) | |
word_chunk = word | |
if word_chunk: | |
chunks.append(word_chunk.strip()) | |
else: | |
if len(current_chunk + " " + part) <= max_chars: | |
current_chunk += " " + part if current_chunk else part | |
else: | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
current_chunk = part | |
else: | |
# Normal sentence processing | |
if len(current_chunk + " " + sentence) <= max_chars: | |
current_chunk += " " + sentence if current_chunk else sentence | |
else: | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
current_chunk = sentence | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
return [chunk for chunk in chunks if chunk.strip()] | |
def generate_tts_audio( | |
text_input: str, | |
audio_prompt_path_input: str, | |
exaggeration_input: float, | |
temperature_input: float, | |
seed_num_input: int, | |
cfgw_input: float, | |
chunk_size: int = 250 | |
) -> tuple[int, np.ndarray]: | |
""" | |
Generates TTS audio using the ChatterboxTTS model with support for text chunking. | |
Args: | |
text_input: The text to synthesize. | |
audio_prompt_path_input: Path to the reference audio file. | |
exaggeration_input: Exaggeration parameter for the model. | |
temperature_input: Temperature parameter for the model. | |
seed_num_input: Random seed (0 for random). | |
cfgw_input: CFG/Pace weight. | |
chunk_size: Maximum characters per chunk. | |
Returns: | |
A tuple containing the sample rate (int) and the audio waveform (numpy.ndarray). | |
""" | |
try: | |
current_model = get_or_load_model() | |
if current_model is None: | |
raise RuntimeError("TTS model is not loaded.") | |
if seed_num_input != 0: | |
set_seed(int(seed_num_input)) | |
# Split text into chunks | |
text_chunks = split_text_into_chunks(text_input, chunk_size) | |
logger.info(f"Processing {len(text_chunks)} text chunk(s)") | |
generated_wavs = [] | |
output_dir = Path("outputs") | |
output_dir.mkdir(exist_ok=True) | |
for i, chunk in enumerate(text_chunks): | |
logger.info(f"Generating chunk {i+1}/{len(text_chunks)}: '{chunk[:50]}...'") | |
# Generate audio for this chunk | |
wav = current_model.generate( | |
chunk, | |
audio_prompt_path=audio_prompt_path_input, | |
exaggeration=exaggeration_input, | |
temperature=temperature_input, | |
cfg_weight=cfgw_input, | |
) | |
generated_wavs.append(wav) | |
# Save individual chunk if multiple chunks | |
if len(text_chunks) > 1: | |
chunk_path = output_dir / f"chunk_{i+1}_{random.randint(1000, 9999)}.wav" | |
import torchaudio | |
torchaudio.save(str(chunk_path), wav, current_model.sr) | |
logger.info(f"Chunk {i+1} saved to: {chunk_path}") | |
# Concatenate all audio chunks | |
if len(generated_wavs) > 1: | |
# Add small silence between chunks (0.3 seconds) | |
silence_samples = int(0.3 * current_model.sr) | |
# Fix MPS tensor creation - create on CPU first, then move to device | |
first_wav = generated_wavs[0] | |
target_device = first_wav.device | |
target_dtype = first_wav.dtype | |
# Create silence tensor safely for MPS | |
silence = torch.zeros(1, silence_samples, dtype=target_dtype) | |
if DEVICE == "mps": | |
# For MPS, ensure proper tensor initialization | |
silence = silence.to(target_device) | |
else: | |
silence = silence.to(target_device) | |
final_wav = generated_wavs[0] | |
for wav_chunk in generated_wavs[1:]: | |
final_wav = torch.cat([final_wav, silence, wav_chunk], dim=1) | |
else: | |
final_wav = generated_wavs[0] | |
logger.info("β Audio generation complete.") | |
# Save the final concatenated audio | |
output_path = output_dir / f"generated_full_{random.randint(1000, 9999)}.wav" | |
import torchaudio | |
torchaudio.save(str(output_path), final_wav, current_model.sr) | |
logger.info(f"Final audio saved to: {output_path}") | |
return (current_model.sr, final_wav.squeeze(0).numpy()) | |
except Exception as e: | |
logger.error(f"β Generation failed: {e}") | |
raise gr.Error(f"Generation failed: {str(e)}") | |
# Create Gradio interface | |
with gr.Blocks( | |
title="ποΈ Chatterbox-TTS (Local MPS)", | |
theme=gr.themes.Soft(), | |
css=""" | |
.gradio-container { max-width: 1200px; margin: auto; } | |
.gr-button { background: linear-gradient(45deg, #FF6B6B, #4ECDC4); color: white; } | |
.info-box { | |
padding: 15px; | |
border-radius: 10px; | |
margin-top: 20px; | |
border: 1px solid #ddd; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
} | |
.info-box h4 { | |
margin-top: 0; | |
color: #333; | |
font-weight: bold; | |
} | |
.info-box p { | |
margin: 8px 0; | |
color: #555; | |
line-height: 1.4; | |
} | |
.chunking-info { background: linear-gradient(135deg, #e8f5e8, #f0f8f0); } | |
.system-info { background: linear-gradient(135deg, #f0f4f8, #e6f2ff); } | |
""" | |
) as demo: | |
gr.HTML(""" | |
<div style="text-align: center; padding: 20px;"> | |
<h1>ποΈ Chatterbox-TTS Demo (Local)</h1> | |
<p style="font-size: 18px; color: #666;"> | |
Generate high-quality speech from text with reference audio styling<br> | |
<strong>Running locally with Apple Silicon MPS GPU acceleration!</strong> | |
</p> | |
<p style="font-size: 14px; color: #888;"> | |
Based on <a href="https://huggingface.co/spaces/ResembleAI/Chatterbox">official ResembleAI implementation</a><br> | |
β¨ <strong>Enhanced with smart text chunking for longer texts!</strong> | |
</p> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
text = gr.Textbox( | |
value="Hello! This is a test of the Chatterbox-TTS voice cloning system running locally on Apple Silicon. You can now input much longer text and it will be automatically split into chunks for processing.", | |
label="Text to synthesize (supports long text with automatic chunking)", | |
max_lines=10, | |
lines=5 | |
) | |
ref_wav = gr.Audio( | |
type="filepath", | |
label="Reference Audio File (Optional - 6+ seconds recommended)", | |
sources=["upload", "microphone"] | |
) | |
with gr.Row(): | |
exaggeration = gr.Slider( | |
0.25, 2, step=0.05, | |
label="Exaggeration (Neutral = 0.5, extreme values can be unstable)", | |
value=0.5 | |
) | |
cfg_weight = gr.Slider( | |
0.2, 1, step=0.05, | |
label="CFG/Pace", | |
value=0.5 | |
) | |
with gr.Accordion("βοΈ Advanced Options", open=False): | |
chunk_size = gr.Slider( | |
100, 400, step=25, | |
label="Chunk Size (characters per chunk for long text)", | |
value=250 | |
) | |
seed_num = gr.Number( | |
value=0, | |
label="Random seed (0 for random)", | |
precision=0 | |
) | |
temp = gr.Slider( | |
0.05, 5, step=0.05, | |
label="Temperature", | |
value=0.8 | |
) | |
run_btn = gr.Button("π΅ Generate Speech", variant="primary", size="lg") | |
with gr.Column(): | |
audio_output = gr.Audio(label="Generated Speech") | |
gr.HTML(""" | |
<div class="info-box chunking-info"> | |
<h4>π Text Chunking Info</h4> | |
<p><strong>Smart Chunking:</strong> Long text is automatically split at sentence boundaries</p> | |
<p><strong>Chunk Processing:</strong> Each chunk generates separate audio, then concatenated</p> | |
<p><strong>Silence Gaps:</strong> 0.3s silence added between chunks for natural flow</p> | |
<p><strong>Output Files:</strong> Individual chunks + final combined audio saved</p> | |
</div> | |
""") | |
# System info | |
gr.HTML(f""" | |
<div class="info-box system-info"> | |
<h4>π» System Status</h4> | |
<p><strong>Device:</strong> {DEVICE.upper()} {'π' if DEVICE == 'mps' else 'π»'}</p> | |
<p><strong>PyTorch:</strong> {torch.__version__}</p> | |
<p><strong>MPS Available:</strong> {'β Yes' if torch.backends.mps.is_available() else 'β No'}</p> | |
<p><strong>Model Status:</strong> Ready for generation</p> | |
</div> | |
""") | |
# Connect the interface | |
run_btn.click( | |
fn=generate_tts_audio, | |
inputs=[ | |
text, | |
ref_wav, | |
exaggeration, | |
temp, | |
seed_num, | |
cfg_weight, | |
chunk_size, | |
], | |
outputs=[audio_output], | |
show_progress=True | |
) | |
# Example texts - now with longer examples | |
gr.Examples( | |
examples=[ | |
["Hello! This is a test of voice cloning technology running locally on Apple Silicon."], | |
["The quick brown fox jumps over the lazy dog. This sentence contains every letter of the alphabet. Now we can test longer text with multiple sentences to see how the chunking works."], | |
["Welcome to the future of voice synthesis! With Chatterbox, you can clone any voice in seconds. The technology uses advanced neural networks to capture the unique characteristics of a speaker's voice. This includes their tone, accent, speaking rhythm, and emotional expressiveness. The result is incredibly natural-sounding speech that maintains the original speaker's identity."], | |
["Artificial intelligence has revolutionized the way we interact with technology and create content. From virtual assistants to content creation tools, AI is transforming every aspect of our digital lives. Voice cloning technology represents one of the most exciting frontiers in this field, enabling us to preserve voices, create accessibility tools, and develop new forms of creative expression."] | |
], | |
inputs=[text], | |
label="π Example Texts (including longer ones)" | |
) | |
def main(): | |
"""Main function to launch the app""" | |
try: | |
# Attempt to load the model at startup | |
logger.info("Loading model at startup...") | |
get_or_load_model() | |
logger.info("β Startup model loading complete!") | |
# Launch the interface | |
demo.launch( | |
server_name="127.0.0.1", | |
server_port=7861, | |
share=False, | |
debug=True, | |
show_error=True | |
) | |
except Exception as e: | |
logger.error(f"β CRITICAL: Failed to load model on startup: {e}") | |
print(f"Application may not function properly. Error: {e}") | |
# Launch anyway to show the interface | |
demo.launch( | |
server_name="127.0.0.1", | |
server_port=7861, | |
share=False, | |
debug=True, | |
show_error=True | |
) | |
if __name__ == "__main__": | |
main() |