File size: 18,464 Bytes
3836582 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
#!/usr/bin/env python3
"""
Chatterbox-TTS Gradio App - Based on Official ResembleAI Implementation
Adapted for local usage with MPS GPU support on Apple Silicon
Original: https://huggingface.co/spaces/ResembleAI/Chatterbox/tree/main
"""
import random
import numpy as np
import torch
import gradio as gr
import logging
from pathlib import Path
import sys
import re
from typing import List
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Monkey patch torch.load to handle device mapping for Chatterbox-TTS
original_torch_load = torch.load
def patched_torch_load(f, map_location=None, **kwargs):
"""
Patched torch.load that automatically maps CUDA tensors to CPU/MPS
"""
if map_location is None:
# Default to CPU for compatibility
map_location = 'cpu'
logger.info(f"π§ Loading with map_location={map_location}")
return original_torch_load(f, map_location=map_location, **kwargs)
# Apply the patch immediately after torch import
torch.load = patched_torch_load
# Also patch it in the torch module namespace to catch all uses
if 'torch' in sys.modules:
sys.modules['torch'].load = patched_torch_load
logger.info("β
Applied comprehensive torch.load device mapping patch")
# Device detection with MPS support
# Note: Chatterbox-TTS has compatibility issues with MPS, forcing CPU for stability
if torch.cuda.is_available():
DEVICE = "cuda"
logger.info("π Running on CUDA GPU")
else:
DEVICE = "cpu"
if torch.backends.mps.is_available():
logger.info("π Apple Silicon detected - using CPU mode for Chatterbox-TTS compatibility")
logger.info("π‘ Note: MPS support is disabled due to chatterbox-tts library limitations")
else:
logger.info("π Running on CPU")
print(f"π Running on device: {DEVICE}")
# Try different import paths for chatterbox
MODEL = None
def get_or_load_model():
"""Loads the ChatterboxTTS model if it hasn't been loaded already,
and ensures it's on the correct device."""
global MODEL, DEVICE
if MODEL is None:
print("Model not loaded, initializing...")
try:
# Try the official import path first
try:
from chatterbox.src.chatterbox.tts import ChatterboxTTS
logger.info("β
Using official chatterbox.src import path")
except ImportError:
# Fallback to our previous import
from chatterbox import ChatterboxTTS
logger.info("β
Using chatterbox direct import path")
# Load model to CPU first to avoid device issues
MODEL = ChatterboxTTS.from_pretrained("cpu")
# Move to target device if not CPU
if DEVICE != "cpu":
logger.info(f"Moving model components to {DEVICE}...")
try:
# For MPS, use safer tensor movement
if DEVICE == "mps":
# Move components with MPS-safe approach
if hasattr(MODEL, 't3') and MODEL.t3 is not None:
MODEL.t3 = MODEL.t3.to(DEVICE)
logger.info("β
t3 component moved to MPS")
if hasattr(MODEL, 's3gen') and MODEL.s3gen is not None:
MODEL.s3gen = MODEL.s3gen.to(DEVICE)
logger.info("β
s3gen component moved to MPS")
if hasattr(MODEL, 've') and MODEL.ve is not None:
MODEL.ve = MODEL.ve.to(DEVICE)
logger.info("β
ve component moved to MPS")
else:
# Standard device movement for CUDA
if hasattr(MODEL, 't3'):
MODEL.t3 = MODEL.t3.to(DEVICE)
if hasattr(MODEL, 's3gen'):
MODEL.s3gen = MODEL.s3gen.to(DEVICE)
if hasattr(MODEL, 've'):
MODEL.ve = MODEL.ve.to(DEVICE)
MODEL.device = DEVICE
logger.info(f"β
All model components moved to {DEVICE}")
except Exception as e:
logger.warning(f"β οΈ Failed to move some components to {DEVICE}: {e}")
logger.info("π Falling back to CPU mode for stability")
DEVICE = "cpu"
MODEL.device = "cpu"
logger.info(f"β
Model loaded successfully on {DEVICE}")
except Exception as e:
logger.error(f"β Error loading model: {e}")
raise
return MODEL
def set_seed(seed: int):
"""Sets the random seed for reproducibility across torch, numpy, and random."""
torch.manual_seed(seed)
if DEVICE == "cuda":
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
elif DEVICE == "mps":
# MPS doesn't have separate seed functions
pass
random.seed(seed)
np.random.seed(seed)
def split_text_into_chunks(text: str, max_chars: int = 250) -> List[str]:
"""
Split text into chunks at sentence boundaries, respecting max character limit.
Args:
text: Input text to split
max_chars: Maximum characters per chunk
Returns:
List of text chunks
"""
if len(text) <= max_chars:
return [text]
# Split by sentences first (period, exclamation, question mark)
sentences = re.split(r'(?<=[.!?])\s+', text)
chunks = []
current_chunk = ""
for sentence in sentences:
# If single sentence is too long, split by commas or spaces
if len(sentence) > max_chars:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = ""
# Split long sentence by commas
parts = re.split(r'(?<=,)\s+', sentence)
for part in parts:
if len(part) > max_chars:
# Split by spaces as last resort
words = part.split()
word_chunk = ""
for word in words:
if len(word_chunk + " " + word) <= max_chars:
word_chunk += " " + word if word_chunk else word
else:
if word_chunk:
chunks.append(word_chunk.strip())
word_chunk = word
if word_chunk:
chunks.append(word_chunk.strip())
else:
if len(current_chunk + " " + part) <= max_chars:
current_chunk += " " + part if current_chunk else part
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = part
else:
# Normal sentence processing
if len(current_chunk + " " + sentence) <= max_chars:
current_chunk += " " + sentence if current_chunk else sentence
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return [chunk for chunk in chunks if chunk.strip()]
def generate_tts_audio(
text_input: str,
audio_prompt_path_input: str,
exaggeration_input: float,
temperature_input: float,
seed_num_input: int,
cfgw_input: float,
chunk_size: int = 250
) -> tuple[int, np.ndarray]:
"""
Generates TTS audio using the ChatterboxTTS model with support for text chunking.
Args:
text_input: The text to synthesize.
audio_prompt_path_input: Path to the reference audio file.
exaggeration_input: Exaggeration parameter for the model.
temperature_input: Temperature parameter for the model.
seed_num_input: Random seed (0 for random).
cfgw_input: CFG/Pace weight.
chunk_size: Maximum characters per chunk.
Returns:
A tuple containing the sample rate (int) and the audio waveform (numpy.ndarray).
"""
try:
current_model = get_or_load_model()
if current_model is None:
raise RuntimeError("TTS model is not loaded.")
if seed_num_input != 0:
set_seed(int(seed_num_input))
# Split text into chunks
text_chunks = split_text_into_chunks(text_input, chunk_size)
logger.info(f"Processing {len(text_chunks)} text chunk(s)")
generated_wavs = []
output_dir = Path("outputs")
output_dir.mkdir(exist_ok=True)
for i, chunk in enumerate(text_chunks):
logger.info(f"Generating chunk {i+1}/{len(text_chunks)}: '{chunk[:50]}...'")
# Generate audio for this chunk
wav = current_model.generate(
chunk,
audio_prompt_path=audio_prompt_path_input,
exaggeration=exaggeration_input,
temperature=temperature_input,
cfg_weight=cfgw_input,
)
generated_wavs.append(wav)
# Save individual chunk if multiple chunks
if len(text_chunks) > 1:
chunk_path = output_dir / f"chunk_{i+1}_{random.randint(1000, 9999)}.wav"
import torchaudio
torchaudio.save(str(chunk_path), wav, current_model.sr)
logger.info(f"Chunk {i+1} saved to: {chunk_path}")
# Concatenate all audio chunks
if len(generated_wavs) > 1:
# Add small silence between chunks (0.3 seconds)
silence_samples = int(0.3 * current_model.sr)
# Fix MPS tensor creation - create on CPU first, then move to device
first_wav = generated_wavs[0]
target_device = first_wav.device
target_dtype = first_wav.dtype
# Create silence tensor safely for MPS
silence = torch.zeros(1, silence_samples, dtype=target_dtype)
if DEVICE == "mps":
# For MPS, ensure proper tensor initialization
silence = silence.to(target_device)
else:
silence = silence.to(target_device)
final_wav = generated_wavs[0]
for wav_chunk in generated_wavs[1:]:
final_wav = torch.cat([final_wav, silence, wav_chunk], dim=1)
else:
final_wav = generated_wavs[0]
logger.info("β
Audio generation complete.")
# Save the final concatenated audio
output_path = output_dir / f"generated_full_{random.randint(1000, 9999)}.wav"
import torchaudio
torchaudio.save(str(output_path), final_wav, current_model.sr)
logger.info(f"Final audio saved to: {output_path}")
return (current_model.sr, final_wav.squeeze(0).numpy())
except Exception as e:
logger.error(f"β Generation failed: {e}")
raise gr.Error(f"Generation failed: {str(e)}")
# Create Gradio interface
with gr.Blocks(
title="ποΈ Chatterbox-TTS (Local MPS)",
theme=gr.themes.Soft(),
css="""
.gradio-container { max-width: 1200px; margin: auto; }
.gr-button { background: linear-gradient(45deg, #FF6B6B, #4ECDC4); color: white; }
.info-box {
padding: 15px;
border-radius: 10px;
margin-top: 20px;
border: 1px solid #ddd;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.info-box h4 {
margin-top: 0;
color: #333;
font-weight: bold;
}
.info-box p {
margin: 8px 0;
color: #555;
line-height: 1.4;
}
.chunking-info { background: linear-gradient(135deg, #e8f5e8, #f0f8f0); }
.system-info { background: linear-gradient(135deg, #f0f4f8, #e6f2ff); }
"""
) as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px;">
<h1>ποΈ Chatterbox-TTS Demo (Local)</h1>
<p style="font-size: 18px; color: #666;">
Generate high-quality speech from text with reference audio styling<br>
<strong>Running locally with Apple Silicon MPS GPU acceleration!</strong>
</p>
<p style="font-size: 14px; color: #888;">
Based on <a href="https://huggingface.co/spaces/ResembleAI/Chatterbox">official ResembleAI implementation</a><br>
β¨ <strong>Enhanced with smart text chunking for longer texts!</strong>
</p>
</div>
""")
with gr.Row():
with gr.Column():
text = gr.Textbox(
value="Hello! This is a test of the Chatterbox-TTS voice cloning system running locally on Apple Silicon. You can now input much longer text and it will be automatically split into chunks for processing.",
label="Text to synthesize (supports long text with automatic chunking)",
max_lines=10,
lines=5
)
ref_wav = gr.Audio(
type="filepath",
label="Reference Audio File (Optional - 6+ seconds recommended)",
sources=["upload", "microphone"]
)
with gr.Row():
exaggeration = gr.Slider(
0.25, 2, step=0.05,
label="Exaggeration (Neutral = 0.5, extreme values can be unstable)",
value=0.5
)
cfg_weight = gr.Slider(
0.2, 1, step=0.05,
label="CFG/Pace",
value=0.5
)
with gr.Accordion("βοΈ Advanced Options", open=False):
chunk_size = gr.Slider(
100, 400, step=25,
label="Chunk Size (characters per chunk for long text)",
value=250
)
seed_num = gr.Number(
value=0,
label="Random seed (0 for random)",
precision=0
)
temp = gr.Slider(
0.05, 5, step=0.05,
label="Temperature",
value=0.8
)
run_btn = gr.Button("π΅ Generate Speech", variant="primary", size="lg")
with gr.Column():
audio_output = gr.Audio(label="Generated Speech")
gr.HTML("""
<div class="info-box chunking-info">
<h4>π Text Chunking Info</h4>
<p><strong>Smart Chunking:</strong> Long text is automatically split at sentence boundaries</p>
<p><strong>Chunk Processing:</strong> Each chunk generates separate audio, then concatenated</p>
<p><strong>Silence Gaps:</strong> 0.3s silence added between chunks for natural flow</p>
<p><strong>Output Files:</strong> Individual chunks + final combined audio saved</p>
</div>
""")
# System info
gr.HTML(f"""
<div class="info-box system-info">
<h4>π» System Status</h4>
<p><strong>Device:</strong> {DEVICE.upper()} {'π' if DEVICE == 'mps' else 'π»'}</p>
<p><strong>PyTorch:</strong> {torch.__version__}</p>
<p><strong>MPS Available:</strong> {'β
Yes' if torch.backends.mps.is_available() else 'β No'}</p>
<p><strong>Model Status:</strong> Ready for generation</p>
</div>
""")
# Connect the interface
run_btn.click(
fn=generate_tts_audio,
inputs=[
text,
ref_wav,
exaggeration,
temp,
seed_num,
cfg_weight,
chunk_size,
],
outputs=[audio_output],
show_progress=True
)
# Example texts - now with longer examples
gr.Examples(
examples=[
["Hello! This is a test of voice cloning technology running locally on Apple Silicon."],
["The quick brown fox jumps over the lazy dog. This sentence contains every letter of the alphabet. Now we can test longer text with multiple sentences to see how the chunking works."],
["Welcome to the future of voice synthesis! With Chatterbox, you can clone any voice in seconds. The technology uses advanced neural networks to capture the unique characteristics of a speaker's voice. This includes their tone, accent, speaking rhythm, and emotional expressiveness. The result is incredibly natural-sounding speech that maintains the original speaker's identity."],
["Artificial intelligence has revolutionized the way we interact with technology and create content. From virtual assistants to content creation tools, AI is transforming every aspect of our digital lives. Voice cloning technology represents one of the most exciting frontiers in this field, enabling us to preserve voices, create accessibility tools, and develop new forms of creative expression."]
],
inputs=[text],
label="π Example Texts (including longer ones)"
)
def main():
"""Main function to launch the app"""
try:
# Attempt to load the model at startup
logger.info("Loading model at startup...")
get_or_load_model()
logger.info("β
Startup model loading complete!")
# Launch the interface
demo.launch(
server_name="127.0.0.1",
server_port=7861,
share=False,
debug=True,
show_error=True
)
except Exception as e:
logger.error(f"β CRITICAL: Failed to load model on startup: {e}")
print(f"Application may not function properly. Error: {e}")
# Launch anyway to show the interface
demo.launch(
server_name="127.0.0.1",
server_port=7861,
share=False,
debug=True,
show_error=True
)
if __name__ == "__main__":
main() |