Update README.md
Browse files
README.md
CHANGED
@@ -26,6 +26,59 @@ library_name: transformers
|
|
26 |
> - **Fair Comparisons:** In rigorously controlled experiments, SDAR achieves **on-par general task performance** with strong AR baselines, ensuring credibility and reproducibility.
|
27 |
> - **Superior Learning Efficiency:** On complex scientific reasoning tasks (e.g., GPQA, ChemBench, Physics), SDAR shows **clear gains over AR models** of the same scale, approaching or even exceeding leading closed-source systems.
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# Performance
|
30 |
|
31 |
### SDAR v.s. Qwen
|
|
|
26 |
> - **Fair Comparisons:** In rigorously controlled experiments, SDAR achieves **on-par general task performance** with strong AR baselines, ensuring credibility and reproducibility.
|
27 |
> - **Superior Learning Efficiency:** On complex scientific reasoning tasks (e.g., GPQA, ChemBench, Physics), SDAR shows **clear gains over AR models** of the same scale, approaching or even exceeding leading closed-source systems.
|
28 |
|
29 |
+
# Inference
|
30 |
+
|
31 |
+
## Using the tailored inference engine [JetEngine](https://github.com/Labman42/JetEngine)
|
32 |
+
|
33 |
+
JetEngine enables more efficient inference compared to the built-in implementation.
|
34 |
+
|
35 |
+
```bash
|
36 |
+
git clone https://github.com/Labman42/JetEngine.git
|
37 |
+
cd JetEngine
|
38 |
+
pip install .
|
39 |
+
```
|
40 |
+
|
41 |
+
The following example shows how to quickly load a model with JetEngine and run a prompt end-to-end.
|
42 |
+
|
43 |
+
```python
|
44 |
+
import os
|
45 |
+
from jetengine import LLM, SamplingParams
|
46 |
+
from transformers import AutoTokenizer
|
47 |
+
|
48 |
+
model_path = os.path.expanduser("/path/to/your/sdar-model")
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
50 |
+
# Initialize the LLM
|
51 |
+
llm = LLM(
|
52 |
+
model_path,
|
53 |
+
enforce_eager=True,
|
54 |
+
tensor_parallel_size=1,
|
55 |
+
mask_token_id=151669, # Optional: only needed for masked/diffusion models
|
56 |
+
block_length=4
|
57 |
+
)
|
58 |
+
|
59 |
+
# Set sampling/generation parameters
|
60 |
+
sampling_params = SamplingParams(
|
61 |
+
temperature=1.0,
|
62 |
+
topk=0,
|
63 |
+
topp=1.0,
|
64 |
+
max_tokens=256,
|
65 |
+
remasking_strategy="low_confidence_dynamic",
|
66 |
+
block_length=4,
|
67 |
+
denoising_steps=4,
|
68 |
+
dynamic_threshold=0.9
|
69 |
+
)
|
70 |
+
|
71 |
+
# Prepare a simple chat-style prompt
|
72 |
+
prompt = tokenizer.apply_chat_template(
|
73 |
+
[{"role": "user", "content": "Explain what reinforcement learning is in simple terms."}],
|
74 |
+
tokenize=False,
|
75 |
+
add_generation_prompt=True
|
76 |
+
)
|
77 |
+
|
78 |
+
# Generate text
|
79 |
+
outputs = llm.generate_streaming([prompt], sampling_params)
|
80 |
+
```
|
81 |
+
|
82 |
# Performance
|
83 |
|
84 |
### SDAR v.s. Qwen
|