dav1dliu commited on
Commit
ad731b5
·
verified ·
1 Parent(s): 4bb0357

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -83
README.md CHANGED
@@ -2,88 +2,56 @@
2
  license: apache-2.0
3
  library_name: transformers
4
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  # Introduction
6
 
7
- **SDAR**(**S**ynergy of **D**iffusion and **A**uto**R**egression)-model is a new large language model that integrates autoregressive (AR) and discrete diffusion modeling strategies. It combines the efficient training paradigm of AR models with the highly parallel inference capability of diffusion models, while delivering performance fully on par with SOTA opensource AR models. At the same time, SDAR sets a new benchmark as the most powerful diffusion language model to date.
8
-
9
- > The SDAR series models undergo continued training on Qwen3 models.
10
-
11
- # Performance of SDAR-1.7B-Chat on various benchmarks
12
-
13
- evaluation settings:
14
- - MMLU: 5-shot
15
- - Math500: 0-shot
16
- - GSM8K: 0-shot
17
- - HumanEval: 0-shot
18
- - Sanitized_MBPP: 0-shot
19
- - IFEval: 0-shot
20
- - MathBench: 0-shot
21
-
22
-
23
- | Model | MMLU | Math500 | GSM8K | HumanEval | Sanitized_MBPP | IFEval | MathBench |
24
- |-------------------|------|---------|-------|-----------|----------------|--------|-----------|
25
- | SDAR-1.7B-Chat | 62.9 | 63.2 | 80.06 | 61.59 | 61.09 | 43.44 | 63.55 |
26
- | SDAR-4B-Chat | | | | | | | |
27
- | SDAR-8B-Chat | | | | | | | |
28
- | SDAR-30B-A3B-Chat | | | | | | | |
29
-
30
-
31
-
32
- **Note**: The 4B, 8B, and 30B models are coming soon. Performance results for these models will be released in the near future.
33
-
34
- ## Inference
35
-
36
- ### Using the tailored inference engine [JetEngine](https://github.com/Labman42/JetEngine)
37
-
38
- JetEngine enables more efficient inference compared to the built-in implementation.
39
-
40
- ```bash
41
- git clone https://github.com/Labman42/JetEngine.git
42
- cd JetEngine
43
- pip install .
44
- ```
45
-
46
- The following example shows how to quickly load a model with JetEngine and run a prompt end-to-end.
47
-
48
- ```python
49
- import os
50
- from jetengine import LLM, SamplingParams
51
- from transformers import AutoTokenizer
52
-
53
- model_path = os.path.expanduser("/path/to/your/sdar-model")
54
- tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
55
- # Initialize the LLM
56
- llm = LLM(
57
- model_path,
58
- enforce_eager=True,
59
- tensor_parallel_size=1,
60
- mask_token_id=151669, # Optional: only needed for masked/diffusion models
61
- block_length=4
62
- )
63
-
64
- # Set sampling/generation parameters
65
- sampling_params = SamplingParams(
66
- temperature=1.0,
67
- topk=0,
68
- topp=1.0,
69
- max_tokens=256,
70
- remasking_strategy="low_confidence_dynamic",
71
- block_length=4,
72
- denoising_steps=4,
73
- dynamic_threshold=0.9
74
- )
75
-
76
- # Prepare a simple chat-style prompt
77
- prompt = tokenizer.apply_chat_template(
78
- [{"role": "user", "content": "Explain what reinforcement learning is in simple terms."}],
79
- tokenize=False,
80
- add_generation_prompt=True
81
- )
82
-
83
- # Generate text
84
- outputs = llm.generate_streaming([prompt], sampling_params)
85
- ```
86
-
87
- ## Hightlights
88
- - **Performance**: SDAR-1.7B-Chat achieves state-of-the-art.
89
- - **Efficiency**: SDAR provides over 2× faster inference speed compared to the same-size AR models, while maintaining comparable performance.
 
2
  license: apache-2.0
3
  library_name: transformers
4
  ---
5
+
6
+ # SDAR
7
+
8
+ <div align="center">
9
+ <img src="https://raw.githubusercontent.com/JetAstra/SDAR/main/assets/SDAR_doc_head.png">
10
+
11
+
12
+ <div>&nbsp;</div>
13
+
14
+ [💻Github Repo](https://github.com/JetAstra/SDAR) • [🤗Model Collections](https://huggingface.co/collections/JetLM/sdar-689b1b6d392a4eeb2664f8ff)
15
+
16
+ </div>
17
+
18
  # Introduction
19
 
20
+ **SDAR** (**S**ynergy of **D**iffusion and **A**uto**R**egression) model is a new large language model that integrates autoregressive (AR) and discrete diffusion modeling strategies. It combines the efficient training paradigm of AR models with the highly parallel inference capability of diffusion models, while delivering performance fully on par with SOTA open-source AR models. At the same time, SDAR sets a new benchmark as the most powerful diffusion language model to date. We highlight three major conclusions from our study:
21
+
22
+ > [!IMPORTANT]
23
+ > Take-home message
24
+ >
25
+ > - **Balanced Efficiency:** SDAR unifies the **efficient training** of AR models with the **parallel inference** of diffusion, achieving both fast training and inference.
26
+ > - **Fair Comparisons:** In rigorously controlled experiments, SDAR achieves **on-par general task performance** with strong AR baselines, ensuring credibility and reproducibility.
27
+ > - **Superior Learning Efficiency:** On complex scientific reasoning tasks (e.g., GPQA, ChemBench, Physics), SDAR shows **clear gains over AR models** of the same scale, approaching or even exceeding leading closed-source systems.
28
+
29
+ # Performance
30
+
31
+ ### SDAR v.s. Qwen
32
+
33
+ For **SDAR** models, inference hyperparameters are set to: `block_length = 4`, `denoising_steps = 4`, greedy decoding.
34
+
35
+ For **Qwen3-1.7B-AR-SFT** and **Qwen3-30B-AR-SFT**, we use *greedy decoding*, and the base models **Qwen3-1.7B-Base** and **Qwen3-30B-Base** are derived from the [Qwen3 Technical Report](https://arxiv.org/abs/2505.09388).
36
+
37
+ <p align="center">
38
+ <img src="https://raw.githubusercontent.com/JetAstra/SDAR/main/assets/table1.png" style="max-width:100%; height:auto;">
39
+ <p align="center">
40
+
41
+ ### SDAR-Sci v.s. AR Baseline
42
+
43
+ This table presents a **controlled comparison** between AR and SDAR under the same backbone and dataset settings.
44
+ The results are averaged over 8 runs for GPQA, and over 32 runs each for AIME 2024, AIME 2025, and LiveMathBench.
45
+
46
+ <p align="center">
47
+ <img src="https://raw.githubusercontent.com/JetAstra/SDAR/main/assets/table2.png" style="max-width:100%; height:auto;">
48
+ <p align="center">
49
+
50
+ #### SDAR-Sci v.s. Other Models
51
+
52
+ This table positions **SDAR-30B-A3B-Sci(sample)** against leading open-source and closed-source LLMs.
53
+ Scores for external models are sourced from the [InternLM/Intern-S1](https://github.com/InternLM/Intern-S1) repository.
54
+
55
+ <p align="center">
56
+ <img src="https://raw.githubusercontent.com/JetAstra/SDAR/main/assets/table3.png" style="max-width:100%; height:auto;">
57
+ <p align="center">