Model Overview
- Model Optimizations:
- Weight quantization: FP8
- Activation quantization: FP8
- Release Date: 1/29/2025
Quantized version of deepseek-ai/DeepSeek-R1-0528-Qwen3-8B to FP8 data type, ready for inference with SGLang >= 0.3 or vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
Deployment
Use with SGLang
python -m sglang.launch_server --model-path JamAndTeaStudios/DeepSeek-R1-0528-Qwen3-8B-FP8-Dynamic \
--port 30000 --host 0.0.0.0
Use with vLLM
python -m vllm.entrypoints.openai.api_server --model JamAndTeaStudios/DeepSeek-R1-0528-Qwen3-8B-FP8-Dynamic \
--port 8000 --host 0.0.0.0
Creation
This model was created with llm-compressor by running the code snippet below.
Model Creation Code
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
MODEL_ID = "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B"
# 1) Load model.
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# 2) Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp8 with per channel via ptq
# * quantize the activations to fp8 with dynamic per token
recipe = QuantizationModifier(
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]
)
# 3) Apply quantization and save in compressed-tensors format.
OUTPUT_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
oneshot(
model=model,
recipe=recipe,
tokenizer=tokenizer,
output_dir=OUTPUT_DIR,
)
# Confirm generations of the quantized model look sane.
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=20)
print(tokenizer.decode(output[0]))
print("==========================================")
Evaluation
TBA
Base Model
This model is a quantized version of deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load the quantized model
model_id = "JamAndTeaStudios/DeepSeek-R1-0528-Qwen3-8B-FP8-Dynamic"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto"
)
# Example usage
messages = [
{"role": "user", "content": "What is the capital of France?"}
]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=100,
temperature=0.7,
do_sample=True
)
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(response)
License
This model is released under the MIT License.
- Downloads last month
- 39