Model Overview

  • Model Optimizations:
    • Weight quantization: FP8
    • Activation quantization: FP8
  • Release Date: 1/29/2025

Quantized version of deepseek-ai/DeepSeek-R1-0528-Qwen3-8B to FP8 data type, ready for inference with SGLang >= 0.3 or vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.

Deployment

Use with SGLang

python -m sglang.launch_server --model-path JamAndTeaStudios/DeepSeek-R1-0528-Qwen3-8B-FP8-Dynamic \
--port 30000 --host 0.0.0.0

Use with vLLM

python -m vllm.entrypoints.openai.api_server --model JamAndTeaStudios/DeepSeek-R1-0528-Qwen3-8B-FP8-Dynamic \
--port 8000 --host 0.0.0.0

Creation

This model was created with llm-compressor by running the code snippet below.

Model Creation Code
from transformers import AutoModelForCausalLM, AutoTokenizer

from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot

MODEL_ID = "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B"

# 1) Load model.
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID, device_map="auto", torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# 2) Configure the quantization algorithm and scheme.
# In this case, we:
#   * quantize the weights to fp8 with per channel via ptq
#   * quantize the activations to fp8 with dynamic per token
recipe = QuantizationModifier(
    targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]
)

# 3) Apply quantization and save in compressed-tensors format.
OUTPUT_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
oneshot(
    model=model,
    recipe=recipe,
    tokenizer=tokenizer,
    output_dir=OUTPUT_DIR,
)

# Confirm generations of the quantized model look sane.
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=20)
print(tokenizer.decode(output[0]))
print("==========================================")

Evaluation

TBA

Base Model

This model is a quantized version of deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Load the quantized model
model_id = "JamAndTeaStudios/DeepSeek-R1-0528-Qwen3-8B-FP8-Dynamic"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    device_map="auto"
)

# Example usage
messages = [
    {"role": "user", "content": "What is the capital of France?"}
]

text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt").to(model.device)

with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=100,
        temperature=0.7,
        do_sample=True
    )

response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(response)

License

This model is released under the MIT License.

Downloads last month
39
Safetensors
Model size
8.19B params
Tensor type
BF16
·
F8_E4M3
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support