JahBless's picture
BiasDetect_RoBERTa_Large_len256_f1_95
a14e6b3 verified
metadata
library_name: transformers
license: mit
base_model: roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: roberta_large_len256
    results: []

roberta_large_len256

This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3063
  • Accuracy: 0.9503
  • F1: 0.9503
  • Precision: 0.9503
  • Recall: 0.9503

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3137 1.0 4000 0.3495 0.9193 0.9195 0.9217 0.9193
0.1578 2.0 8000 0.2891 0.9484 0.9484 0.9491 0.9484
0.0851 3.0 12000 0.3063 0.9503 0.9503 0.9503 0.9503

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.1.2
  • Datasets 3.5.1
  • Tokenizers 0.21.1